Update to previous ELOG post for Effective Volumes and Errors for AraSim simulations for antennas from Paper_Run and Curved_Sides.
AraSim version compiled ~11/2021 and the (old) GENETIS version
Here are the column definitions:
- The first column indicates the antenna being described. For example, XF_model_21_20 was the 20th individual in the 21st generation for the run discussed in the paper. Curved_side_1 was the best performing individual from the curved run done in February 2022. Curved_Side_1_Quad_Zero indicates the curved individual with its quadratic term set to 0. Curved_Side_1_Straightened indicates the curved individual with the quadratic term set to zero and the linear term modified so as to keep the outer radius the same as it originally was (that is, for Curved_Side_1).
- The next three columns are the measurements for that individual.
- The first one idicates the mean effective volume of the runs done for that individual. There were ~300 runs, each of 10,000 neutrinos.
- The second column indicates the standard deviation of the mean (the previous column). This was measured by taking the standard deviation of the effective volumes (the line that says test Veff(ice) in the AraOut file) from all 300 runs (that is, Sigma(mean - x_i)/Sqrt(300)).
- example of line:
- Veff(ice) : 5.25337e+09 m3sr, 5.25337 km3sr
- The final column indicates the average of the errors on the effective volume measurements from the AraOut files (the line that Veff(water eq.)) divided by Sqrt(300) for each of the 300 jobs (that is, Sigma(x_i/Sqrt(300))/300).
- example of line:
- And Veff(water eq.) error plus : 0.552722 and error minus : 0.552722
Note: Previously, the best curved individual (according to the run data) had been excluded (instead, we had the 2nd-6th best individuals). This has been corrected, with the order corrected.
Also find attached a file called full_resimulate_DNA.csv . It contains the DNA for the top five curved individuals, the DNA for those same individuals with their quadratic term set to 0, and the DNA for those individuals with the quadratic term set to zero and the linear term modified to maintain the same outer radius as in the original run.
Finally, the three images show the original best curved bicone (Curved_Side_1), the best curved bicone when its quadratic gene was set to 0 (Curved_Side_1_Quad_Zero), and the best curved bicone when its quadratic gene was set to 0 *and* its linear gene was changed to keep the same outer radius (Curved_Side_1_Straightened).
We have chosen XF_Model_23_08 to be the one actually built for testing. This was decided based on the data presented here. XF_Model_23_08 was the highest scoring individual in the paper run. Because the paper data was generated using the old version of AraSim, it was decided that using those results would make the most sense for which antenna to build. This would also mean that we can compare directly to the best individual in the paper. This individual was chosen over the curved sided inviduals because it has a higher fitness score, both when using the old version of AraSim and the new version. |