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Abstract

The Askaryan Radio Array (ARA) is an experiment that detects ultra-high energy (> 10'8eV)
neutrinos. Neutrino interactions within the Antarctic ice sheet produce electromagnetic signals in
the 150-850 MHz radio frequency (RF) band, detectable by RF antennas. Antennas must be
broadband, azimuthally symmetric, and conform to 10 cm diameter boreholes. These constraints
create a unique set of antenna design parameters at approximately 1 meter wavelengths. This
project’s goal is to improve ARA neutrino sensitivity by optimizing antenna radiation patterns.
Radiation patterns are modelled by spherical harmonics and expansion coefficients. A genetic
algorithm is created to find sets of expansion coefficients that maximize detector effectiveness.
Two neutrino simulation tools are created to evaluate antenna performance. Optimization results
suggest downward directed radiation patterns with main lobes from 90° < 8 < 120° maximize
neutrino detection. This feature and broadband requirements lead to the recommendation of

a discone antenna for the ARA detector.



1 Background and Motivation
1.1 Project Overview

Ultra-high energy (UHE) neutrinos (10'® — 102! eV) are neutrally charged, weakly
interacting particles that travel through space from energetic cosmic events. Due to their inert
nature, neutrinos are the only feasible known particles for the study of ultra-high energy sources
more than approximately 107 parsecs (1 parsec =~ 30.8 X 10° km) from Earth [1]. However, these
same properties complicate UHE neutrino detection. There is an expected interaction rate of less
than 1 UHE neutrino per giga-ton of matter per year [1]. Therefore, large and highly sensitive
detectors are required.

Neutrino-ice interactions produce in-phase radiation between a few MHz and 1 GHz.
In-phase radiation, called coherent radiation, adds constructively. This makes the signal
distinguishable from noise. Antennas convert this radiation into electrical potential difference. This
project focuses on improving the antennas in the Askaryan Radio Array (ARA), a neutrino
experiment located in Antarctica [2]. Genetic algorithms (GA) optimize radiation patterns to
maximize neutrino detection. Multiple neutrino interaction simulators (discussed in Chapter 2)
interface with the GA to perform the optimization.

Chapter 1 of this paper discusses the importance of UHE neutrinos, detection methods, and
current detection experiments. Chapter 2 defines the genetic algorithm and describes optimization
techniques and genetic algorithm verification. Chapter 3 discusses neutrino detection simulators.
Chapter 4 presents optimization results. Chapter 5 suggests possible antenna designs and future

work.



1.2 Importance of Cosmic Neutrinos
Parts of the high-energy universe are not viewable using traditional photon telescopes [3].
Since neutrinos are uncharged, magnetic fields do not affect their propagation direction. Neutrinos
are weakly interacting; hence, neutrino absorption while traveling to Earth is rare. Therefore,
neutrinos provide unique information about the universe since they travel directly from their
source, unimpeded, to Earth. Ultra-high energy neutrino flux can provide information about ultra-
high energy particle accelerators [4].
1.2.1 Astrophysical Neutrinos
IceCube (section 1.3.1) was the first experiment to detect astrophysical neutrinos with

energies 10'° - 107 eV. These are the highest-energy neutrinos detected [5]. These neutrinos are
produced outside of the galaxy by two types of sources: cosmic ray accelerators and cosmic ray
reservoirs. Cosmic-ray accelerators such as blazars and gamma-ray bursts produce neutrinos
directly. Blazars are galaxies with black holes at their centers and emit high energy particles. In
cosmic-ray reservoirs, neutrinos are produced from cosmic rays while still confined in the source.
Examples of cosmic ray reservoirs include starburst galaxies and galaxy clusters [4].
1.2.2 Cosmogenic Neutrinos

Neutrinos can provide information about rare particles known as ultra-high energy cosmic
rays (UHECR). UHECRs have an energy density comparable to the cosmic microwave
background (CMB), a remnant of the early universe. Studying UHECRs provides information
about their sources [6].

UHECRSs interact with cosmic microwave background photons to produce cosmogenic
neutrinos, among other particles [7]. This phenomenon is called the GZK effect. Measuring the

cosmogenic neutrino flux tests UHECR production and propagation models. Their flux and energy



composition depends on UHECR composition (protons or heavier nuclei), the red shift of UHECR
sources, and how UHECRs are accelerated [6]. Neutrino experiments discussed in section 1.3

measure the maximum cosmogenic neutrino flux value [4].

1.3 Landscape of Neutrino Detection
1.3.1 IceCube
The IceCube Neutrino Observatory is a neutrino detector located near the South Pole.

IceCube detected over 80 high-energy neutrinos, including the first high-energy astrophysical
neutrinos, with energies between 100 TeV and a few PeV [8]. For reference, 1 PeV is two orders
of magnitude greater than energies generated in the Large Hadron Collider (13 TeV) at CERN [9].
IceCube uses optical sensors to monitor 1 km? of ice for neutrino interactions. The detector is
located approximately 2.5 km below the ice surface [8]. IceCube has detected the highest energy
neutrinos to date (1 PeV) but has yet to detect an ultra-high energy cosmogenic neutrino [10].
1.3.2 Askaryan Effect

In 1962, Gurgen Askaryan predicted that neutrally charged particles such as neutrinos could
create coherent radio emission. When a neutrino collides with a nucleon, a particle shower can
occur. Through processes such as Compton scattering and annihilation of positrons, this shower
of secondary particles acquires a 20% net negative charge asymmetry [11]. If the charge is
traveling faster than the phase velocity of light in the medium, the medium will emit
electromagnetic radiation. The signal is enhanced in dielectrics with high densities. For
wavelengths longer than the shower in the transverse direction, Lt (typically 3-5 cm in ice), the
signal is coherent (Figure 1-1) at frequencies less than 1 GHz. Coherent signals are distinguishable

from noise. Therefore, in-ice Askaryan radiation detectors must receive signals less than 1 GHz.



Figure I-1: Illustration of transverse direction of a particle shower [32].

The Askaryan effect was first observed in a beam test at SLAC National Accelerator
Laboratory, originally named Stanford Linear Accelerator Center, in 2001 [11]. The experiment

produced a time-domain signal shown in Figure 1-2.
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Figure 1-2: Radio signal from Askaryan Radiation measured
at SLAC National Accelerator [33].

Neutrino detection experiments commonly use ice due to its long attenuation length

(approximately 1000 m at 300 MHz [12]). Attenuation length is the travel distance that decreases



signal power by l/e. Long attenuation lengths allow for neutrino detection in large volumes.
Antarctica’s large quantity of ice creates a large volume for neutrino interactions to occur, making
it an ideal location for neutrino experiments.
1.3.3 The Antarctic Impulsive Transient Antenna

The Antarctic Impulsive Transient Antenna (ANITA) is an airborne neutrino detection
experiment. ANITA flies 35-37 km above the Antarctic continent carried by a NASA
long-duration balloon. ANITA observes signals using vertically and horizontally polarized horn
antennas operating from 200 MHz to 1200 MHz. ANITA observes approximately 1.5 X 10° km?
ofice [11]. Antarctic weather conditions limit ANITA’s flight duration to approximately 30 days
per year.
1.3.4 The Askaryan Radio Array

The Askaryan Radio Array (ARA) is a neutrino detection experiment sensitive to
cosmogenic neutrinos located near the South Pole. ARA37, the completed ARA detector, will
consist of 37 stations in a triangular array with a 2 km separation distance, shown in Figure 1-3.

There are currently five ARA stations deployed as of January 2018.
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Figure 1-3: Deployed and planned ARA station locations, January 2018 [2].

Each ARA station consists of 16 antennas distributed among four “strings”. Each string
contains four antennas in a 10 cm diameter borehole located 200 m below the ice surface.
Figure 1-4 shows the string arrangement. Antenna pairs are vertically and horizontally polarized.
Each station has two additional strings of antennas for calibration. Fiber optic cable transmits
antenna signals to trigger and data recording electronics. A typical trigger requires a received
power threshold 5 times greater than the mean power in 3 or more of the 16 station antennas [11].
When this criterion is met, a trigger will signal a digitizer to record data. Measured Askaryan
radiation can be traced to determine neutrino event location and ultimately the neutrino’s
propagation direction. This project optimizes the vertically polarized antennas radiation patterns

to improve neutrino detection. The baseline design for a single ARA station is shown in Figure 1-4.
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Figure 1-4: Baseline design of an ARA station [2].

ARA and IceCube are sensitive to neutrinos with different energies: 10'3 to 10'7 eV [8] and
10'® to 10" eV [2], respectively. Each experiment attempts to determine the neutrino flux at their
respective energy ranges. ARA covers less ice than ANITA but ANITA is limited to 30-100 day
flights due to extreme weather in Antarctica. In a 30-day flight, ANITA-II was expected to detect
5.8 neutrinos while ARA37 is expected to detect 48.7 neutrinos in a year, according to the most
optimistic models [2].

1.4 In-Ice Neutrino Detection Geometry

The Antarctic ice sheet and Askaryan radiation create a specific geometry for in-ice neutrino
detection. Neutrinos traveling upward with respect to the ice surface are expected to interact with
the Earth prior to reaching the Antarctic ice sheet. Neutrinos traveling downward with respect to

the ice surface are unlikely to interact with the ice sheet prior to passing the detector (Figure 1-5).
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These conditions decrease the likelihood of detecting neutrinos coming from below and above the
detector, respectively.
Askaryan Radiation is emitted in a cone defined by a medium-dependent angle. The

Cherenkov angle defines this cone,

c0S(Ocone) = % (1-1)

where 6.,,. is the Cherenkov angle, n is the medium's refractive index, and f is the particle
shower's velocity relative to the speed of light in vacuum [7]. Antarctic ice refractive index

decreases with depth [12], which computationally intensifies radio propagation modeling.
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Figure 1-5: Multiple neutrino entry locations and interactions.

Figure 1-5 shows three types of neutrino interactions. The interaction location is depicted
with a bold dot. The interaction with the horizontal neutrino path is detectable because it interacts
with the ice and the radiation travels to the antenna. A neutrino produces radiation when it interacts
with a proton or neutron. Hence, interactions occur within the volume of a material rather than the
surface. Askaryan radiation from the interaction with the Earth is not detected (red X) because the

radio signal is absorbed in rock. The downward traveling neutrino is unlikely to be detected
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because it will likely pass the detector before interacting with the ice. This project aims to match
the in-ice neutrino geometry to the ARA detector design.
1.5 Why apply optimization?

Neutrino detection is improved by maximizing ARA antenna gain at neutrino incident angles.
When analytical solutions do not exist, optimizing radiation patterns enhances antenna

performance.

2 Optimization and the Genetic Algorithm
2.1 Introduction to Optimization and Mathematical Optimization

Optimization is the process of selecting the best solution to a problem among a set of
potential solutions [13]. The goodness of a particular solution is described by an objective function

or performance index [ 14]. Mathematically, optimization is the process of solving the problem

minimize or maximize f(x), X = [x,%0 .., x,]T € R® (2-1)

while satisfying equality or inequality constraints on the column vector x [15]. Each element x;
of x is a design variable, f(x) is the objective function, and the optimal solution X* is the vector
that maximizes/minimizes the objective function while satisfying all constraints. The objective
function f(x) can be analytically defined, a simulation result, or experimental data.

For example, consider the problem

minimize f(X) = x% + x3, X =[x, x,]T € R? (2-2)

subject to constraint

(2-3)
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The constraint can be rewritten

X, =21—x4 (2-4)

The objective function has a global minimum f(x = 0) = 0 but this solution does not satisfy
equation 2-3. The optimal solution is X* = [0.5, 0.5]7 because it minimizes the objective function
while satisfying constraints. Figure 2-1 shows the objective function contour map, the boundary

set by the constraints, and the optimal solution location.
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Figure 2-1: Contour map of the objective function, the constraints boundary (red line),
and the optimal solution (black cross).

Many mathematical techniques and algorithms help find solutions to optimization
problems. Optimization methods generally fall into two categories: gradient-based and
gradient-free. Gradient-based optimization uses derivative information from the objective function

to find minima or maxima. Gradient-free optimization uses an algorithm or probabilistic model to
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find solutions. An example of gradient optimization in an unconstrained problem is the method of
steepest descent [16]. The gradient of the objective function Vf is calculated at a point. The
gradient V£ is in the direction of steepest ascent normal to a contour. A new point is chosen in the
direction of Vf or —Vf to approach a maximum or minimum, respectively. The method of steepest
descent is iterative, with each iteration approaching a local solution. Convergence to a global
solution is not guaranteed unless the search begins in the neighborhood of the global solution [16].
The method of Lagrange multipliers is commonly used in constrained gradient optimization [13,
15, 16].

Gradient search methods can converge quickly, are computationally efficient, and
guarantee a local solution is found [15]. However, the derivative of the objective function is not
always available or continuous. In the case of a simulation, a potential solution vector X; is mapped
to f (9?]-), but the closed-form expression for the objective function f(x) is not explicitly defined.
Noisy objective functions can have derivatives with large discontinuities. In such cases, gradient-
free optimization is preferred over gradient-based searches [14]. Gradient-free optimization
methods leverage the speed of modern computing to test potential solutions on f(x). The simplest
optimization method is a brute-force approach, in which f(x) is evaluated at every potential
solution on a user-defined domain. For high-dimensionality problems, brute force is impractical
due to the large number of potential solutions. Other types of gradient-free optimization include
random searches, pattern searches, and Bayesian optimization [17].

2.2 Optimization Algorithms Inspired by Real-World Processes

Several optimization algorithms exist that replicate nature’s ability to find optimal states

in complex systems. Examples of optimization algorithms inspired by real-world processes include

swarm algorithms, simulated annealing, and evolutionary algorithms. Each algorithm relies on
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techniques and probabilities to find optimal solutions instead of gradient information. This allows
for optimization with noisy or multi-modal objective functions. Furthermore, optimization is
possible when a closed-form expression for f(x) does not exist [18].

The biological dynamics such as bird flocking, fish schooling, and insect swarming inspire
swarm algorithms [19]. Particle swarm optimization is a successful implementation of swarm
optimization. A set of potential solutions P (called a population) is randomly created. Each
potential solution X; (called an agent) in P is evaluated on the objective function f(x). The best
fitness in the entire group is recorded, and each agent’s personal fitness is recorded. A velocity
vector ¥ is calculated from each agent to determine its location in the next iteration. Each agent
moves towards its personal best location and the best location in P. Movement allows for
exploration of the parameter space. Each agent will eventually occupy the same location,
indicating convergence. This location is the optimum solution x* [19].

Metallurgical annealing inspires the simulated annealing algorithm. In metallurgical
annealing, samples are repeatedly heated and cooled to reduce defects in a material [20].
Simulated annealing algorithms are useful in problems with high-dimensionality and noisy
objective functions. The algorithm is unlikely to find a global solution but has a high probability
of finding a high-quality solution [18]. Simulated annealing creates a potential solution X; (called
the sample) and evaluates this solution on the objective function. The sample starts at simulation
temperature T. The solution is randomly modified and evaluated on the objective function. It will
improve or diminish in quality compared to the previous state, which is summarized by the quantity

AD. AD is negative for an improved solution, and positive for a diminished solution. The algorithm

AD
will accept the change in state if e 7 > R(0,1), where R(0,1) is a random number on the interval

[0,1]. The algorithm is more likely to accept a diminished solution at high temperature and reject

16



one at low temperature [ 18]. Over time the sample is cooled, forcing the algorithm to only accept
changes in state that increase solution quality. This forces the algorithm to converge to a solution.
The initial state at high temperature allows the algorithm to search the solution space, and
convergence is guaranteed as the sample cools [20].

Evolutionary algorithms are a class of gradient-free optimization algorithms that are
inspired by biological evolution [13, 17]. Evolutionary algorithms create a set of potential solutions
P called a population and perform operations on P to improve the solution quality for the entire
set. These operations generate new solutions by combining features of higher quality solutions in
P. This simulates the mating of fit individuals in a biological population. The entire population
evolves over several generations, each time improving solution quality [21]. NASA successfully
used evolutionary algorithms to generate unique antenna designs subject to radiation pattern

constraints [22].

2.3 Introduction to Genetic Algorithms

A genetic algorithm is an optimization technique modelled after modern genetic theory. In
a genetic algorithm, a random set of potential solutions to a problem is produced. This set is called
a population P. Each potential solution in P is a chromosome. The genetic algorithm evaluates
each chromosome on the objective function and assigns a fitness score. Some chromosomes are
eliminated in favor of replacements. The remaining members are then selected using a decision-
making process called a selection method, which pairs chromosomes together for reproduction.
Paired chromosomes are called parents. Through another process called the reproduction method,
the parents create one or two new chromosomes, called children. These children are evaluated on
the objective function, assigned a fitness score, and inserted into the population. Children are

produced until the original size of the population is restored. This new population represents the

17



next generation of potential solutions. The process repeats until a user-defined convergence
condition is met.

Genetic algorithms model natural selection by simulating ‘survival of the fittest” evolution.
Chromosomes with low fitness scores are eliminated and better-performing chromosomes have
increased probability for parent selection. Children may be randomly mutated prior to evaluation,
resulting in features contained in neither parent. This process introduces new genetic material to
the population and promotes exploration of the parameter space. Over several generations, the
population quality will increase because highly-fit chromosomes share their genetic information
with the rest of the population.

Genetic algorithms have successfully solved optimization problems in real-world
applications [23]. Haupt and Haupt [21] summarize the genetic algorithm’s advantages as an
optimization tool, including:

e Derivative information is unnecessary

e A wide domain of the objective function’s surface is searched and sampled

e Optimizes surfaces where concavity is not guaranteed

e Provides several potential solutions to the objective function

e Works with constrained search parameters

e Works with numerically generated data, experimental data, or external simulation tools
Genetic algorithms are a useful tool for optimization where only the relative quality of a solution
i1s known. However, they require many objective function evaluations to assign fitness scores to
chromosomes [24]. This can result in long optimization times for problems with computationally
involved fitness assignments, such as external simulation tools. Fitness assignments are

parallelizable, reducing optimization time on parallel-capable machines.
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2.4 The Chromosome Genotype and Phenotype

Optimization variables must be compatible with the genetic algorithm. In binary string
genetic algorithms, all optimization parameters are represented by a single binary string. The
genetic algorithm manipulates the binary string rather than the optimization variables directly. The
programmer decides how this binary string maps to the optimization problem. The binary string is
the chromosome genotype. The chromosome phenotype are the optimization variables evaluated
on the objective function. Genetic algorithms are not constrained to binary string genotypes.
Continuous variable genotypes are often used because they map to the optimization problem more
directly [21]. Binary string and continuous variable genotypes are both referred to as X hereafter.
2.4.1 Binary String Genotypes

Consider the problem of maximizing a function f(x), ¥ = [x;,x,]7 € R? constrained to
the interval x € [—1, 1].In a binary string genetic algorithm, optimization parameters x; and x,
are encoded into a binary string input for the genetic algorithm [21]. Parameter resolution is

determined by

domain size (2_5)

resolution =
271

where n is the number of bits used to represent a parameter. If both parameters are encoded into
an 8-bit binary string, the parameter resolution is % = 7.8125 X 1073. The parameters map to

binary strings:
x; =—1.0 - x; = 0b00000000

x, = +0.9921875 - x,'=0b11111111
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The entire genotype is the concatenation of the two binary strings [x] x,']. A point is then mapped
to a binary string:

x = [-1.0,40.9921875]T - 0h000000011111111

In this example, the string ‘000000011111111’ is the genetic algorithm genotype, but the vector
X is the phenotype. The objective function evaluates the phenotype, but the genetic algorithm
operates on the binary string. Potential solutions are discretized in 7.8125 X 1073 steps and the
parameter space is limited to 21® = 65536 unique solutions. Longer binary strings are used for
greater precision.
2.4.2 Continuous Variable Genotypes

In continuous variable genotypes, the optimization parameters map to continuous
variables. Considering the same problem as before, the optimization parameters now map to
continuous variables:

x=—-1-x"=-1.0

y=+1-y"=+1.0

The parameter resolution is limited by the computer’s resolution. One benefit of the continuous
variable genotype is close or even exact mapping between the genotype and phenotype [23].
However, the parameter space becomes much larger. In binary strings, the number of possible
solutions is limited by the length of the genotype, but there are nearly infinite potential solutions
with a continuous variable genotype. Continuous variable genotypes allow for wider variety of

crossover and mutation processes, discussed in sections 2.6 and 2.7.
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2.5 Selection Methods

The selection method is responsible for choosing parents that will pass on genes to offspring.
Selection methods should, on average, favor better-performing individuals in a population.
However, it is important to maintain diversity in a population to prevent premature convergence
to local solutions [25]. Selection methods can choose less fit solutions to prevent one particular
solution from dominating the entire population.

Selection methods are separated into two categories: fitness proportionate and elitist
selection. In a fitness proportionate selection scheme, the probability that an individual is selected
to become a parent is proportional to its fitness score. Better-performing individuals are more
likely to be selected than other members of the population. If the fitness of a high-performing
individual is not suitably large, the probability that this individual is not selected for reproduction
increases. This could result in a low-quality final solution. The elitist selection scheme attempts to
remedy this problem by placing more pressure on the selection method to choose fit individuals
and prevent unfit individuals from passing on genes. Intentional bias towards better solutions is
referred to as elitism. Two selection methods are discussed: the roulette method, a
fitness-proportionate scheme, and tournament selection, an elitist scheme.

2.5.1 Roulette Selection

The roulette selection method imitates the random nature of a roulette wheel. Each individual
in a population is assigned a section of a roulette wheel with size directly proportional to the
individual’s fitness score, and the wheel is “spun” to randomly select an individual. The roulette

selection method is illustrated in Figure 2-2.
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Figure 2-2: Roulette selection of an individual from a population.

The number S is equal to the sum of the population’s fitness. Each member is allocated a portion

equal to the size of its fitness score on the interval [0, S]. A marker m; is chosen from a real

uniform distribution on [0, S]. m; selects the individual. In genetic algorithms that use two parents

for reproduction, the roulette method is implemented as follows [26]:

1.

E, is the fitness of the n'* individual in the population. In a population of N individuals,

the sum of fitness scores S is

S = i E, (2-6)
n=1

Random markers m; and m, are chosen from a real uniform distribution on the
interval [0, S], where m; < m,.
The first selected individual is the i** member of the population, where i is the first integer

index to satisfy the criteria

Fp = m, 2-7)
1

S
1l

The second selected individual is the j**member of the population, where j is the first

integer index to satisfy the criteria

j
Z E, =>m, (2-8)
n=1
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The probability that the i*" individual in a population is selected P; is
)2
Pi = El (2-9)

P; is proportional to an individual’s fitness F;, making this selection method fitness
proportionate [27]. This process is equivalent to placing two markers randomly on a roulette wheel
and spinning the wheel once. It is convenient to implement in software because only one running
sum must be performed to select both individuals. Once the first individual is selected, the program
continues adding fitness scores until the second marker has been reached. A potential downside is
the case where m; + m, < F;. In this case, one individual could meet both criteria, and be selected
as both parents. This resulting offspring would be identical to the parent. If one individual is
particularly fit, this might lead to loss of diversity early in the algorithm, where each offspring is
a copy of this parent. This would result in premature convergence without adequately exploring
the solution space. To prevent this from occurring, selection should be performed without
replacement [21]. That is, once the first parent is chosen, it is temporarily removed from the
population until a second parent has been chosen, preventing one parent from dominating the
selection process.
2.5.2 Tournament Selection

The tournament selection method compares individuals against one another. In the simplest
tournament, two members of the population are selected at random with equal probability. The
fitness scores of these individuals are directly compared, and the individual with the larger fitness
score is selected to reproduce [21]. Guaranteed selection of the fittest individual classifies the
tournament method as elitist. The benefit of an elitist scheme is that it prevents loss of good genetic

material. A single tournament is called a k-way tournament, where k is the number of individuals
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competing in the tournament. The tournament described above is a 2-way tournament; only two
individuals compete. A k-way tournament can be implemented in software as follows [26]:
1. Generate an array 4 of all potential individual indices for population of N individuals.
A={0,1,2,..,N -1}
2. Shuffle the array A4.
3. Read the first k indices from the shuffled array and place the individuals of the population
at these indices in a tournament.
4. Compare the fitness scores of each individual in the tournament and choose the fittest
individual for reproduction.
Multiple tournaments can be held with or without replacement to choose several individuals for
reproduction. The probability that an individual is selected depends only on the individual’s rank
in comparison to the other members of the tournament pool. In general, the probability that an
individual is selected to enter the tournament pool is &/N. This means the probability that the fittest
individual in the entire population is selected for reproduction is &/N. This allows the programmer
to control the level of diversity within the population. In optimization problems with lengthy
fitness computation times or where a local maximum/minimum is desired rather than a global
maximum/minimum, set & sufficiently large to promote rapid convergence to a local solution [27].
An excessive k value can lead to loss of population diversity because it increases the probability

that only the most fit individual chosen.
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Figure 2-3: Two 5-way tournaments select two individuals for reproduction.
Figure 2-3 shows an example selection of two parents with two 5-way tournaments. Ten
chromosomes are chosen randomly from the population without replacement. The fittest
chromosomes in each tournament are selected for reproduction.
2.6 Reproduction Methods
Reproduction methods control how genes are passed from parents to offspring. Genetic
algorithms typically use only two parents for reproduction, but high quality solutions can be
produced by using more than two parents to produce a single offspring [23]. For this project,
crossover methods are limited to two parents.
2.6.1 Single-Point Crossover
Single-point crossover generates at most two different children from two different parents.
A random integer marker is chosen from a real uniform distribution on [0, L,]. Let p,and p,
represent the parents, and c¢; and c, represent the children. Before the marker location, the
genotype of ¢; will match the genotype of p;, and the genotype of ¢, will match the genotype of
p,. After the marker, the genotype of ¢; will match the genotype of p,, and the genotype of ¢, will

match the genotype of p; [23]. Figure 2-4 shows this process.
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Figure 2-4: Single-point crossover with crossover point at position 3.

2.6.2 Multi-Point Crossover

Multi-point crossover expands upon the same process used in single-point crossover, but
with an arbitrary number of crossover points. Children receive genetic material from a unique
parent. Each time a crossover marker is reached, a child receives its genetic material from the other
parent [23]. This is implemented by generating an array A of all potential marker indices

A=1{0,1,2,..,L, — 1}

P

Figure 2-5: Multipoint crossover with crossover points at poistions 3 and 6.
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where L, is the genotype length. The array is shuffled. If n crossover points are desired, the first n
values are read from the shuffled array. Figure 2-5 illustrates a two-point crossover with crossover

points at position 3 and 6.

2.6.3 Uniform Crossover

Uniform crossover interleaves the parents’ genetic information randomly among the two
children. At each gene location, a random number is drawn from a real uniform distribution on the
interval [0, 1]. If the number is greater than a threshold # = 0.5, the child ¢; inherits the gene from
parent p;, and c, receives the gene from p,. If the number is below the threshold, ¢; inherits from
p,, and ¢, inherits from p; [23]. With a threshold of 0.5, genes from both parents are randomly
and uniformly interleaved within the children. The threshold is adjusted to promote more

inheritance from a single parent. Figure 2-6 shows an example uniform crossover with t = 0.5.

P

Figure 2-6: Example uniform crossover with t = 0.5.

.

=
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2.6.4 Continuous Variable Average Crossover

This crossover type is unique to continuous variable genotypes. In continuous variable
average crossover, each gene is averaged between the two parents to create one or two
children [21]. For each gene, the weighted average of the parent genes is calculated and is assigned
to the child. The new gene is biased towards a particular parent with a coefficient a which lies on
the interval [0.5, 1]. The genotype of two children produced through floating point average

Crossover is

X, = ax, + (1 —a)x,,

X, = (1 —a)x,, +ax,,

If a = 0.5, the children are identical and located halfway between each parent. If a = 1, ¢ is

identical to p; and c, is identical to p,.

2.7 Mutations

A mutation is an operator that acts on a chromosome’s genotype. It randomly introduces
new genetic material to the population, encouraging exploration of the parameter space. Each gene
in the genotype has probability p,, of being mutated. In many genetic algorithms, p,, is equal to
1/L,, where L, is the genotype length. This encourages mutation of only one gene at a time [21].
If p,, 1s too large, it can change too much of the genotype at once, potentially moving a solution
away from a maximum/minimum. In binary string genotype representations, the mutation inverts

a bit at the mutation location, shown in Figure 2-7.
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Figure 2-7: Binary string mutation selects the 3rd bit in the
genotype for mutation.

Continuous variable genotypes enable more complex mutations. Rather than inverting a
bit, a new gene is chosen at random from a Gaussian distribution. If the gene x; has been chosen
for mutation, the new gene is chosen at random from a Gaussian distribution with mean u = x;
and variance o2, where o is the standard deviation. The variance is user-defined and depends on
the optimization problem [23]. The variance can be increased or decreased to promote searching

different sizes of the parameter space.
2.8 Genetic Algorithm Implementation

A genetic algorithm written in C++ and is used for optimization. The continuous variable
genotype is chosen for ease of implementation. The first iteration of the genetic algorithm, referred
to as GAl, is outlined below. The genetic algorithm operates on fixed population size of

N chromosomes for G generations, where N and G are user inputs.

—_—

Generate a population of N random chromosomes.

2. Score the population on the objective function.

3. Generate N/2 new chromosomes by selecting two parents using roulette selection and
continuous variable average crossover with crossover parameter a = 0.8.

4. Generate N/6 new chromosomes by selecting one individual from roulette selection and

Gaussian mutation with parameters p,, = 1/L, and 6% = 1.0.
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5. Generate N/6 new chromosomes by selecting two parents from two, 6-way tournaments
and continuous variable average crossover with crossover parameter a = 0.8.

6. Generate N/6 new chromosomes by selecting one individual from a single, 6-way
tournament selection and Gaussian mutation with parameters p,,, = 1/L, and 2 = 1.0.

7. Score population on the objective function.

8. If G generations have been completed, terminate the program. Else, return to step 3.

The size of the chromosome genotype and the objective function is application dependent and are
input by the user at runtime. The continuous variable average crossover is chosen to encourage
exploration of the parameter space between high-performing solutions. Mutation parameter p,,, is

chosen as 1/L, to discourage mutations from occurring in multiple dimensions at once.
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2.9 Genetic Algorithm Verification

The genetic algorithm is tested on multiple objective functions with known solutions to
verify performance.
2.9.1 Two-Dimensional Test Case

Consider the problem of finding the ordered pair (x*,y*) that maximizes the function

f(x,y) =19.81 — xsin(4x) — 1.1y sin(2y) (2-12)
subject to the constraints x, y € [0,10]. The function has a global maximum

f(x*=9.03899, y* = 8.66819) = 38.3645 (2-13)
and many local maxima and minima. The genetic algorithm is tested on this objective function,
with fitness assigned by evaluating the objective function. Any solution created that does not fall
within the interval x,y € [0,10] is assigned a fitness of 0. The genotype length is L, = 2, with
x = xqyand y = x,. The algorithm operates on N = 80 individuals with termination criterion of
G = 30 generations. Figure 2-8 shows the objective function surface and optimization summary.

The blue line in the optimization summary shows the maximum fitness in the population at each

generation. The green line shows the population’s average fitness at each generation.

f(x,y) = 19.81 - x sin(4x) - 1.1y sin(2y)

” Optimization Summary

35//

20

w
S

Fitness Score
N
m
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Generation Count

— Maximum Fitness Score
— Avg. Fitness Score

Figure 2-8: Objective function surface (left) and optimization summary (vight).
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The maximum fitness stops increasing, indicating convergence. The genetic algorithm finds
x* = [9.03899, 8.66806]" after 30 generations. This solution has a fitness of 38.3653 and a
distance d = 0.00759 from the known global maximum. Convergence could be improved by

allowing the genetic algorithm to optimize for a larger generation count.

2.9.2 Omnidirectional Radiation Pattern Test Case
The genetic algorithm is tested on radiation pattern optimization. An azimuthally
symmetric radiation pattern G () can be expressed as a weighted sum of spherical harmonics
G(8) = apYQ(0) + a,YL2(6) + - a,Y,2(6), 6 € [0,m] (2-14)
and is subject to conservation of energy and non-negative constraints. Spherical harmonics are
chosen to model antenna gain because they enforce conservation of energy by fixing a, = 2v/.

Enforcing constraints and using the first 13 harmonics simplifies the model to
G(0,a) = 2Vm Y2(0) + a,YL2(0) + - a;,¥%5(0), 6 €[0,n] (2-15)
a=lay,a,, ., a;)" (2-16)
An in-depth discussion of spherical harmonics as models for radiation patterns and necessary
constraints is found in Appendix A.
An expansion vector a can be chosen to model low-gain, azimuthally symmetric radiation

patterns. To maintain consistent vocabulary, let @ — x, where the X is a continuous variable

genotype in a genetic algorithm. The function

FIG(6,D)] = “6(6,7)d6 (2-17)

1
7 max[G (0, x)] jo

is maximized by a radiation pattern G (6, x) = C, or a radiation pattern with no directivity. Thus,

a vector X* exists that maximizes f[G(6,x)] such that the radiation pattern G(6,x*) is
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omnidirectional. f[G (8, x)] is bounded on the range [0, 1] and the optimal solution is known to be
x* = 0. Furthermore, the optimal solution that satisfies conservation of energy constraints is
G(0,x) = 1.0.

The genetic algorithm is configured with genotype length L, = 12. The first generation is
sampled from a uniform distribution with x € [0,10]. Furthermore, to enforce conservation of
energy on radiation patterns, a constraints function is added to the algorithm that corrects solution

vectors

X
. = G(6,x)<0
constrain(x) = 1= min[G(6,%)] (2-18)

X G,x)=0

The new algorithm, GA2, is a modification of GA1 that supports radiation pattern constraints.
GA2 uses the following steps:
1. Generate a population of N random chromosomes.
2. Score population on the objective function.
3. Generate N/2 new chromosomes by selecting two parents from roulette selection and
continuous variable average crossover with crossover parameter a = 0. 8.
4. Generate N/6 new chromosomes by selecting one individual from roulette selection and
Gaussian mutation with parameters p,, = 1/L, and 62 = 1.0.
5. Generate N/6 new chromosomes by selecting two parents from two, 6-way tournaments
and continuous variable average crossover with crossover parameter a = 0. 8.
6. Generate N/6 new chromosomes by selecting one individual from a single, 6-way
tournament selection and Gaussian mutation with parameters p,,, = 1/L, and 2 = 1.0.

7. Constrain each new chromosome according to equation 2-18.
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8. Score population on the objective function.

9.

If stopping criteria is reached, terminate the program. Else, return to step 3.

The genetic algorithm, GA2, will find X that maximizes f[G (8, x)]. In this problem, the genetic

algorithm phenotype is a radiation pattern G(6,%) and the genotype is x. Figure 2-9 shows a

summary of the genetic algorithm optimization and the radiation pattern of the most fit individual

of the final generation. The genetic algorithm finds x* shown in Table 2-1 after 100 generations.

This solution has a fitness of 0.99 and gain averaged over all polar angles of 0 dBi.
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Figure 2-9: Optimization summary (left) and radiation pattern of the fittest individual (vight) for omnidirectional test case..

Table 2-1: Genotype of fittest solution in omnidirectional test case

-0.0036

-0.016 | -0.0093 | -0.0034

-0.0052 | 0.0047 | -0.0043

-0.0034 | 0.0022 | -0.0095 | -0.0013 [ -0.0027

The decibel magnitude plot of the solution resembles an isotropic radiator, which is the expected

solution for an omnidirectional radiation pattern that obeys conservation of energy.
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2.9.3 Directional Radiation Pattern Test Case
The genetic algorithm is tested on its ability to find directional radiation patterns. The
phenotype G (6, x) and genotype X used in section 2.9.2 is used again. The new fitness function is

[y G(6,%)do

T o o 0<6,<6,<m (2-19)
[) G(8,%)d6 o

fIG(8,%)] =

where the range of f[G(6,x)] falls within [0, 1] for non-negative G (6,x). An optimal radiation

0,+64

pattern is a rectangular function II[ G )] with a fitness of 1.0. This solution is

62-6,

unattainable due to the use of a finite number of spherical harmonics in the radiation pattern model.
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Figure 2-10: Optimization summary (left) and radiation pattern of the fittest individual (right) for directional test case.

The genetic algorithm attempts to find X that maximizes f[G(6,x)] with 8; = 85° and
6, = 95°. Figure 2-10 shows a summary of the genetic algorithm optimization and the radiation
pattern of the most fit individual of the final generation. The first generation is randomly

distributed on x € [—5,5]. The genetic algorithm finds Xx* shown in Table 2-2 after
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1000 generations. This solution has a fitness of 0.120. The associated radiation pattern has

maximum gain of 6.23 dBi at 90° with half-power beam width of 20°.

Table 2-2: Genotype of fittest solution in directional test case

X1 X2 X3 X4 Xs Xe X7 Xg Xg X10 X11 X12

-0.0032| -2.76 |-0.0365| 1.91 (-0.0316( -1.76 |-0.0839| 1.76 |-0.0459| -1.37 |-0.0522| 0.53

Fitness could be further improved by using higher-order spherical harmonics. This would increase
the dimensionality of the optimization problem, resulting in longer optimization times.
2.9.4 Discussion of Genetic Algorithm Performance

The genetic algorithm finds optimal solutions to the two-dimensional and omnidirectional
test cases. Furthermore, it finds a sub-optimal solution to the directional test case. The sub-optimal
solution is acceptable because it outperforms the initial generation of randomly selected solutions,
indicating the final solution is better than randomly sampled solutions. The genetic algorithm’s
ability to produce directional and omnidirectional solutions implies it can create a wide range of
low-gain radiation patterns. Note spherical harmonics do not allow discontinuities, making the

global maxima of the directional test case unobtainable.

3 Simulation Tools
3.1 AraSim

The fitness score assignment in this optimization utilizes an in-ice Monte Carlo simulation
software, AraSim. It simulates the ARA detector performance and was developed by
the ARA collaboration. The software simulates high-energy neutrino (~10'® eV) interactions in the
Antarctic ice sheet that produce electromagnetic (EM) showers resulting in radio frequency

radiation. The radiation from in-ice EM showers are modeled by Askaryan radiation described
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in Ref. [6]. The interactions are evenly distributed and confined to a 3 km-radius cylindrical

volume centered around the detector [28]. Figure 3-1 illustrates this volume.

200m

Detector

N~N~—

Figure 3-1: Neutrino interactions are uniformly distributed within a cylindrical volume.

The incoming neutrino travel direction randomly distributed over a 4w solid angle. Radio
emission propagation is modeled using ray tracing methods that determine the path length from
the interaction to the detector. The ray tracing method models the depth dependent index of
refraction of Antarctic ice as a starting at n = 1.3 at the ice surface and reaching n = 1.8 at 200 m
beneath the surface. The emitted EM waves bend through the ice from the interaction site to the
antenna. AraSim calculates the viewing angle, EM wave polarization at the antenna, travel time
to the antenna, ice attenuation factor, and Fresnel refraction factor [28]. AraSim also models the
system electronics, noise waveforms, and the time-domain trigger discussed in depth in Ref. [28].

The detector antennas are gain values over the 83.33 MHz to 1083.53 MHz band, in a
Numerical Electromagnetics Code (NEC) simulation file. The NEC files describe an antenna

model’s gain and phase. Each file is simulated in AraSim at 60 frequencies with 16.67 MHz
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frequency increments, starting at 83.33 MHz. AraSim calculates the detector’s fitness score,
denoted as the effective volume. The effective volume quantifies the volume of ice monitored by
the neutrino detector (described explicitly in section 3.2). This effective volume is appended to the
NEC file to clearly associate its value with the radiation pattern. The effective volume is then used

in the genetic algorithm as an associated fitness metric.

3.2 Effective Volume

The effective volume quantifies the volume of ice monitored by a neutrino detector. It
accounts for trigger threshold, geometry, neutrino-nucleon interaction cross-section (or neutrino
interaction probability), signal strength, and EM propagation in the ice. To first order, the volume
monitored by an ARA station is a cylinder centered on a station, but the directional dependence of
the interaction probability and arrival direction detection probability modify this volume. The

effective area of a detector is defined as,

_ I(gen(E) 1 (3'1)
Aeff(E) - Ngen (E) Lint(E) i;g Wi

where V., (E) is AraSim’s neutrino interaction scan volume, N, (E) is the number of neutrino
interactions, L;,.(E) is the neutrino interaction length within the ice, and w; is the weight
(probability) of a neutrino interaction at a given detection trigger threshold summed over all

possible neutrino interactions, i [1]. L;,: (E) is defined as,

Mpycl 3-2
Ling () = e (32

where My, c1e0n 1S the nucleon mass, p; is the Earth layer i mass density, and o is the neutrino-
nucleon cross-section [7]. L;,;(E) is calculated at the user-defined neutrino interaction energy.
The trigger threshold defines the required EM wave voltage to trigger the detector. Weight

is defined on as
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b (3-3)
WL(E) = | | eLint,j(E)
J

where [; is the path length through material j. Weight is limited to [0, 1] and is directly proportional
to interaction probability over the path the neutrino takes through the Earth. The expected mean
weight of all simulated interactions is 0.50. A neutrino and its associated weight is only included
in the summation if it triggers the detector in the simulation. This definition is valid if the effective

volume is defined as,

Voen(E) N (3-4)
Nyen (E) :

i,trig

Verr(E) =

Detector effective volume is the chosen fitness function because it defines the sensitivity
of a given neutrino experiment. Effective volume is not calculated as a function of the number of
neutrino interactions. However, increased interactions enhance effective volume precision and
decreases uncertainty. Figure 3-2 shows increasing number of simulated neutrinos corresponds to
decreasing error bars.

AraSim reads the NEC file gain values line-by-line until the end of the file. Files varying
from NEC file specific formatting cause file input errors. Therefore, it is necessary to modify the
AraSim file input code to only read the NEC file gain values and not the appended fitness score.
Figure 3-2 demonstrates that modified AraSim and original AraSim assign similar effective
volumes using the standard ARA Vpol and Hpol antenna radiation patterns, as expected. Changing

the method for reading files should not affect the calculated effective volume.
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Figure 3-2: Effective volume and error bars vs. number of detected neutrinos, using Vpol bicone and Hpol quad-siot
antennas.

3.3 Directional Beam Pattern Testing

ARA’s vertically and horizontally polarized antennas (Vpol and Hpol, respectively) are
tested in AraSim to determine the most likely neutrino arrival directions. Only directional beam
radiation patterns are used for one polarization at a time. The angular test range is 0° to 180° with
respect to the vertical in 30° increments, where 0° corresponds to a neutrino path direction
originating from the ice surface, directly above the antenna. These 7 unique beam patterns are
executed in AraSim. The same beam pattern is used at all 60 frequencies. This test benchmarks
which angles of 6 correspond to the largest number of neutrino interactions. Each pattern is
symmetric about the z-axis (azimuthally symmetric) and has approximately 9 dBi of gain in the
specified direction: 0°, 30°, 60°, ... , 180°. Each directional pattern has an approximate first null
beam width (FNBW) of 30°. Figure 3-3 shows two sample beam patterns used in this test focused

at 30° and 120°. Figures 3-4 and 3-5 indicate antennas with main beam lobes between 60° and 120°
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yield higher effective volumes. This indicates an optimized radiation pattern’s main beam is

directed between 60° and 120°.

Power Gainoft ¢=0deg Power Gain at ¢ = 0 deg

0
10 dBi 10 dBi
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0dBi 0dBi
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Figure 3-3: Sample directional beam patterns with main beam centered about 30° (left) and 120° (right) with respect
to vertical and approximate first null beam width (FNBW) = 30°.

Effective Volume of Vpol Directional Beam Patterns
Evaluated in Full AraSim with Hpol muted
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Figure 3-4: Effective volume of Vpol directional beam patterns with respect to vertical. Hpol radiation pattern gain
is set to zero at all angles. Patterns incremented in 30° steps, approximate FNBW = 30°.
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Effective Volume of Hpol Directional Beam Patterns
Evaluated in Full AraSim with Vpol muted
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Figure 3-5: Effective volume of Hpol directional beam patterns with respect to vertical. Vpol radiation pattern gain
is set to zero at all angles. Patterns incremented in 30° steps, approximate FNBW = 30°.

3.4 Simplified AraSim

AraSim requires approximately 30-45 minutes per radiation pattern. This extrapolates to
multi-day full program simulations when executing multiple genetic algorithm generations. To
reduce simulation time, a simplified version of AraSim is created, AraSimLite. The neutrino
energy used in AraSimLite is 1018 eV. The redesigned simulation tool, created in collaboration
with Ohio State University (OSU), simplifies the fitness assignment by omitting the simulation’s
ray-tracing, noise waveforms, signal polarization, and ice modeling. AraSimLite is created by
simulating the neutrino-nucleon interaction cross-sections and samples possible neutrino
interaction points within the ice [29]. It then randomly distributes neutrino directions over 4rmsr
and produces corresponding weights and neutrino path directions.

AraSim requires approximately 30 minutes to simulate 10,000 neutrino interactions and
calculate fitness, while AraSimLite requires approximately 0.3 seconds. Therefore, AraSimLite

evaluates radiation pattern fitness approximately 6000 times faster than AraSim. Executing the
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program loop with AraSimLite in place of AraSim serves as an intermediate test of GA
performance with a neutrino-based fitness function. A full GA test is the program loop executed
with AraSim as the neutrino interaction simulator. AraSimLite results identify potentially optimal
detector radiation patterns that serve as initial radiation patterns for GA-interfaced AraSim. Two

versions of AraSimLite are constructed for testing: AraSimLite and AraSimLite2.

3.5 AraSimLite

A block diagram of AraSimLite is shown below in Figure 3-6.

Number of Neutrino Events
:|—> AraSimLite — Fitness Score
Radiation Pattern

Number of Neutrino Events —» Neutrino Event [ ® Location >

Simulation (OSU) { o \yeight — | Neutrino Event

Evaluation |— Fitness Score
(Cal Poly)

Radiation Pattern ——»|

Figure 3-6: AraSimlLite Block Diagram condensed (top) and expanded (bottom,).

The Neutrino Event Simulation block in Figure 3-6 generates the neutrino event ‘location’
relative to the ARA detector location, and the ‘weight.” ‘Location’ is the event’s three-dimensional
position in rectangular coordinates. ‘Weight’ is the probability that the neutrino event occurs. This
is the probability of neutrino-ice interaction vs. Earth absorption. The Monte Carlo simulation
evaluates a user-defined number of events and returns an array of weights and locations.

AraSimLite uses the data array to calculate a fitness score for each antenna radiation

pattern. The Neutrino Event Evaluation converts the location to polar coordinates, R; and 6;,
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shown in equations 3-5 and 3-6, respectively. Antenna gain g(6;) is computed from the radiation

pattern at angle ;. Fitness score is calculated as

C w;, if _g(@l-) >, (3-5)
fitness score = v R? th
i=1 0, otherwise

where R;, denoted as R in Figure 3-7, is

R; =+/x?2+y%2+ 22 (3-6)

and 6;, denoted as 0 in Figure 3-7, is

z+ 200m> (3-7)

0; = cos™! ( o

z 1s the vertical location of the interaction (z < 0 below the ice surface), N is the number of
neutrino events, and w; is weight. The minimum detectable signal for ARA electronics is the
threshold value 73, in units of % representing % EM wave power loss. Figure 3-7 shows the

AraSimLite geometry. Note z is positive above the ice; therefore, the z location of neutrino events

occurring within the ice are negative.

Z=0
Ice < 5 > > 7
Surface X" +Y
£ +Z
[=}
]
v
©0
ARA :
antenna
R
A
)
Neutrino
Event

Figure 3-7: AraSimLite geometry.
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Equation 3-5 is characterized by varying the threshold value, 1. Figure 3-7 shows the
threshold. In simulation, 7, is adjusted to increase fitness score sensitivity to radiation patterns.
Using an isotropic radiation pattern in AraSimLite, the threshold value 7 is swept to determine
its effect on fitness score. A threshold value that is too low allows many radiation patterns to
achieve high fitness score. However, if the threshold value is too high, then minimal neutrino
events will be detected. Therefore, it is necessary to choose a threshold value that does not saturate
the population with high fitness radiation patterns, but still allows for sufficient event triggering.

The threshold value corresponding to 50% of the maximum fitness score for an isotropic radiator

- . 1
in Figure 3-8 is 1, = 150 —

x10% _Fitness Score vs. Threshold for Isotropic Radiator

O " " " " PR | E " " " N PR |

1078 107 107 107
2

M [1/m*]

Figure 3-8: AraSimLite Fitness score vs. 1y, threshold, isotropic radiator. Red dotted line intersection corresponds
to 50% fitness point.

Decreased computation time sacrifices neutrino simulation accuracy. Table 3-1

shows AraSimLite and AraSimLite2 computations compared to AraSim.
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Table 3-1: Computation Comparison: AraSim, AraSimLite, AraSimLite2. Red boxes indicate included computations.

Computation AraSim AraSimLite | AraSimLite2

Models earth absorption

Accounts for signal spreading
loss

Evaluates single frequency

Accounts for neutrino travel
direction and Cherenkov Cone

Models ice characteristics

Accounts for noise

Accounts for signal polarization

Evaluates full frequency range:
f = 83.3MHz-1083.5 MHz

Note that the radiation path bending due to varying index of refraction in ice as a function
of depth is not accounted for in AraSimLite and AraSimLite2. AraSim has computationally
intensive ice models that calculate through-ice radiation propagation. Omission of ray-tracing and
noise generation are the greatest contributors to increased computational speed in AraSimLite and

AraSimLite2.
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3.6 AraSimLite2

An updated AraSimLite version (AraSimLite2) accounts for neutrino trajectory and the
Cherenkov cone. Table 3-1 above shows the included computations of AraSimLite and
AraSimLite2 compared to AraSim.

The fitness function described in equation 3-5 is updated to account for the Cherenkov
cone. 0, is defined as the angle between the velocity vector ¥ and the vector from the neutrino
event to the detector, R.1f O,iew 1s Within the Cherenkov cone angle, 6,.,,., and the received power
density is greater than 73, the event weight is added to the fitness score. The revised fitness score

is

M, i£99 S nds530 <6, <5630
fitness score = Z v R? th ' view ' (3-9)
i=1 0, otherwise
where 0,0, IS
¥R
O piew = COS™1 < — ) (3-9)
V|- |R|

Glacial ice’s index of refraction is approximately 1.76 [30]. Therefore, using equation 1-1, the
Cherenkov cone angle in glacial ice is 56.8° relative to the neutrino’s velocity vector v . The cone

has a width of approximately 1°. That is

55.3% < 0,ppe < 56.3° (3-10)

Figure 3-9 illustrates an event within the viewing angle. X, Y, and Z represent the
location of the neutrino event in the ice. Events that meet the viewing angle criteria are counted

in the fitness score.
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Ice
Surface Xo+y

200 m

ARA [ &
antenna h

R N eview ~ Ucon

Figure 3-9: Neutrino interaction with Oview meeting viewing angle criteria described in equation 3-8.

The trigger threshold, 1y, is re-characterized to account for changes to the neutrino
simulation model. Figure 3-10 below shows the fitness score, equation 3-8, as a function of 1y, for

an isotropic radiator. Table 3-2 shows critical threshold values and corresponding fitness scores.
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Fitness Score vs. Threshold for Isotropic Radiator
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200
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Fitness
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|

0 L P | " " n
10 107 10 10

2
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Figure 3-10: AraSimLite2 Fitness score vs. threshold, isotropic radiator. Red dotted line intersection corresponds to
50% fitness point.

Table 3-2: Critical threshold values for AraSimLite2

Percent of

Maximum | Fitness rih [1/m?]
75% 167 1.2 x 1077
50% 112 1.4 x 1077
25% 56 2.2x 1077

AraSimLite2 is characterized further to determine the distribution of events that pass the
0w criteria as a function of 6. AraSimLite2 processes antenna radiation patterns using a
pre-produced set of events. AraSimLite2 processes antenna radiation patterns from neutrino-ice

interaction events computed by full AraSim. N = 100,000 events is selected to ensure the

49



simulation accounts for a sufficient number of neutrino paths. A histogram of events that pass
O,iew criteria vs. 6 is shown in Figure 3-11. 8 is the angle between the z-axis and event location,
depicted as 6; in Figure 3-9. Only 693 events (0.693%) pass the viewing angle criteria, and they
cluster around 90° < 8 < 160°. Hence, an optimal radiation pattern’s main beam is in this 6
range. Figure 3-12 is the Figure 3-11 histogram scaled by weight. The total weight in each angular

bin is plotted on the y-axis.

AraSimLite2 Passed Events vs.

Number of Events

40 60 80 100 120 140 160 180
0 [degrees]
Figure 3-11: AraSimLite2 Passed Events Distribution, Viewing Angle within Cherenkov cone.
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Figure 3-12: AraSimlLite2 Passed Event Distribution, scaled by weight.
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4 Radiation Pattern Optimization with Neutrino Simulations

This section introduces AraSimLite and AraSimLite2 optimization results. The genetic
algorithm finds several unique solutions with similar fitness, leading to multiple optimization
results. Analyzing a single result is insufficient. The shared features between multiple optimization
results inform which radiation pattern characteristics lead to high fitness. Sections 4.1 and 4.2
show each result’s radiation pattern, spherical harmonic coefficients, and optimization summary.
Section 4.3 analyzes radiation patterns and compares each to the bicone antenna currently

implemented in the ARA detector.
4.1 Optimization Results Using AraSimLite

GA2 optimizes radiation patterns through G(6,x) and genotype X described in

section 2.9.2. Each optimization trial's population size is N=60. The fitness function is

C w;, if _g(@l-) >r
fle@a1 =y 4 R 7 @)
i=1 0, otherwise

and 1s derived in section 3.5. A selection of three candidate solutions are included.

4.1.1 Candidate Solution 1

N Power Gain G(0) at ¢ = 0 deg
. G(6,) 0
fitness = 2 _w;, 7 > Tth
28000 i=1 ' 330 0dBi %0
26000
-10 dBi
24000 300 60
<20 dBi
© 22000
S
-30 dBi

& 20000
%]
& 18000 270 “JoaBi 90
c
=]
T 16000

14000

12000 240 120

10000

(] 100 200 300 400 500

Generation Count 210 150

— Maximum Fitness Score 180
— Avg. Fitness Score

Figure 4-1: Optimization summary (left) and radiation pattern (right) of CI.
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Figure 4-1 shows the optimization summary and radiation pattern of candidate solution

one (C1). C1 is the fittest individual in the population after 500 generations. The solution vector x

of CI is included in Table 4-1. The C1 radiation pattern has maximum gain of 3.81 dBi at 105°

and a fitness of 26186.0.

Table 4-1: Spherical harmonic coefficients of candidate solution 1

X1

X2

X3 X4 Xs

Xe

X7

Xg

X9

X10

X11

X12

-2.275

-0.751

1.491 [0.502 |-0.825

0.045

0.543

0.105

-0.207

-0.038

0.199

-0.091

4.1.2 Candidate Solution 2

26000

N
. G(6;
fitness = E wz-,(i,,)>rth
, i=1 B

24000 -

22000

20000

18000

Fitness Score

16000

14000

12000
0

50

l[‘)O 1%0
Generation Count

— Maximum Fitness Score
— Avg. Fitness Score

200

300°

270°

Power Gain G(f) at ¢ = 0 deg

330

210

o

10dBi

0dBj

-10 dBi

20 dBi

-40+dBi

180°

30

Figure 4-2: Optimization summary (left) and radiation pattern (right) of C2.

60’

120°

Figure 4-2 shows the optimization summary and radiation pattern of candidate solution

two (C2). C2 is the fittest individual in the population after 200 generations. The solution vector X

of C2 is included in Table 4-2. The C2 radiation pattern has maximum gain of 5.13 dBi at 135°

and a fitness of 25731.5.
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Table 4-2: Genotype of candidate solution 2

X1 X2 X3 X4 X5 Xe X7 Xg X9 X10 X11 X12
-2.097 | -0.124 | 0.989 | -0.002 [ 0.780 | -0.977 | 0.369 | 1.573 | -0.963 | -0.247 | 0.807 | -0.228
4.1.3 Candidate Solution 3
N
. G(6;)
fitness = th R > Tth Power Gain G(0) at ¢ = 0 deg
28000 . =1 - 0°
330° 10dBi g0
26000
0 dBi

24000 |- 10 dBi
v 300 60

22000 .
8 -20 dBi
0}
ﬁ 20000 -30 dBi
S 18000} 270° -40-dBi 90°
&

16000

14000

240° 120°
12000 - - - -
0 100 200 300 400 500
Generation Count
i i 210° 150°
— Maximum Fitness Score 180°

— Avg. Fitness Score

Figure 4-3: Optimization summary (left) and radiation pattern (right) of C3.

Figure 4-3 shows the optimization summary and radiation pattern of candidate solution

three (C3). C3 is the fittest individual in the population after 500 generations. The solution vector

X of C3 is included in Table 4-3. The C3 radiation pattern has maximum gain of 5.42 dBi at 133°

and a fitness of 27119.9.
Table 4-3: Genotype of candidate solution 3
X1 X2 X3 X4 Xs X6 X7 Xg Xoq X10 X11 X12
-2.291 | -0.287 | 1.265 | -0.210 | 0.019 | -0.497 | -0.265 | 1.556 | -1.141 | -0.087 | 1.077 | -0.487
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4.2 Optimization Results Using AraSimLite2
GAZ2 optimizes radiation patterns in AraSimLite2. The phenotype G (8, X) and genotype X

described in section 2.9.2. Each optimization trial size is N=60. The fitness function is,

A i 99 ndss30 <0, <5630
fl6(e, ) = Y { ¥ Y Tz 7 T and 5957 Oriew < 36 (42)
i=1 0, otherwise

and is derived in section 3.6. The genetic algorithm finds several solutions over different
optimization trials. A selection of three candidate solutions are included.

4.2.1 Candidate Solution 4

N
) G(0; .
fitness = Zwi, }(?2) >y, and 55.3°© < Oyiew < 56.3° Power Gain G(0) at ¢ = 0 deg
160 i=1 L 0°
330° . 30°
0-dBi
140} : : r .
-10 dBi
300° 60°
o 1201 1 -20 dBi
]
wn -30 dBi
o
g 270° -40-dBi 90°
k=4
[V
240° 120°
20 ; ; ; ;
0 100 200 300 400 500
Generation Count 210° 150°
— Maximum Fitness Score 180°

— Avg. Fitness Score

Figure 4-4: Optimization summary (left) and radiation pattern (right) of C4.

Figure 4-4 shows the optimization summary and radiation pattern of candidate solution
four (C4). C4 is the fittest individual in the population after 500 generations. The solution vector
X of C4 is included in

Table 4-4. The C4 radiation pattern has maximum gain of 3.98 dBi at 117.3° and a fitness

of 146.4.
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Table 4-4: Genotype of candidate solution 4

140+

Fitness Score

X2 X3 X4 Xe Xg Xg X10 X11 X12
-1.580 | -1.261 | 1.646 | 0.237 | -0.778 | 0.186 | 0.150 | 0.009 | 0.226 | -0.253 | -0.035 | 0.682
4.2.2 Candidate Solution 5
N
fitness = th (ﬁ‘) > 7y, and 55.3° < Opien, < 56.3° Power Gain Géf) at ¢ =0deg
i=1 t
330° i 30°
-10 dBi
300° 60°
-20 dBi
-30 dBi
270° -40-dBi 90°
240° 120°
0 160 2(‘)0 360 460 500
Generation Count 210° 150°
180°

— Maximum Fitness Score
— Auvg. Fitness Score

Figure 4-5: Optimization summary (left) and radiation pattern (right) of C5.

Figure 4-5 shows the optimization summary and radiation pattern of candidate solution

five (C5). CS5 is the fittest individual in the population after 500 generations. The solution vector

X of C5 is included in Table 4-5. The C5 radiation pattern has maximum gain of 3.12 dBi at 101°

and a fitness of 143.2.

Table 4-5: Genotype of candidate solution 5

X1

X2

X3 X4 Xs

Xe

X7

Xg X9 X10 X11

X12

-1.472

-1.093

1.708 | 0.427 | -0.441

0.162

-0.125

0.706 | -0.261 | 0.019 | 0.125

-0.031
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4.2.3 Candidate Solution 6

N

. G(6; o o

fitness = E W;, (@) > 1 and 55.3° < Opiew < 56.3 Power Gain G(0) at ¢ = 0 deg
i=1 o

R?
160 0
330° , 30°
0-dBi
10 dBi
300° 60°
o -20 dBi
o
O
a -30 dBi
(%]
(%]
v 270° -40-dBi 90°
-
T e
60
240° 190°
40 L i L I
0 100 200 300 400 500
Generation Count 210° 150°

— Maximum Fitness Score 180°

— Avg. Fitness Score

Figure 4-6: Optimization summary (left) and radiation pattern (right) of C6.

Figure 4-6 shows the optimization summary and radiation pattern of candidate solution
six (C6). C6 is the fittest individual in the population after 500 generations. The solution vector X

of C6 is included in Table 4-6. The C6 radiation pattern has maximum gain of 3.82 dBi at 116°

and a fitness of 150.5.
Table 4-6: Genotype of candidate solution 6
X1 X2 X3 X4 Xs X6 X7 Xg Xoq X10 X11 X12
-1.211 | -1.327 | 1.810 | 0.456 | -1.043 | 0.308 | 0.108 | 0.111 | 0.071 | -0.332 | -0.030 | 0.476
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4.3 Optimization Results Summary and Comparison

AraSimLite and AraSimLite2 optimization results yield radiation patterns with suppression

in the 0° —90° range and gain in the 90° — 180° range. C3 is the best candidate from the

AraSimLite optimization and has a maximum gain of 5.42 dBi at 133°. C6 is the best candidate

from the AraSimLite2 optimization and has a maximum gain of 3.82 dBi at 116°.

Each candidate solution from AraSimLite2 is downward directed, with main beam

direction 90° < 6 < 120°. This common feature yields high fitness in AraSimLite2. Table 4-7

shows main beam direction and half power beam width for all candidates.

Table 4-7: Radiation Pattern Summary, Candidates C1-C6

Main Beam Second Side Lobe
Origin Half power Half power
Direction . Gain | Direction . Gain
(degrees) beam width (dBi1) | (degrees) beam width (dB1)
g (degrees) g (degrees)
C1 | AraSimLite 104.9 56.0 3.81 N/A N/A N/A
C2 | AraSimLite 134.4 10.8 5.13 95.9 20.6 3.58
C3 | AraSimLite 133.0 10.3 5.42 97.8 20.3 3.64
C4 | AraSimLite2 117.3 45.4 3.98 N/A N/A N/A
C5 | AraSimLite2 101.1 58.2 3.12 180 27.0 2.51
C6 | AraSimLite2 116.8 45.2 3.82 180 23.8 1.09
Table 4-8: Fitness Evaluation and Comparison
ArasSim 3F1tness AraSimLite2 Fitness
[km’sr]
Bicone 6.23 £0.45 91.0
Candidate 6 4.98 +0.45 150.5
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Table 4-8 compares the best performing candidates to the in-ice bicone antenna. Because
AraSimLite and AraSimLite2 are not frequency dependent, the bicone antenna beam pattern at the

center of its operating range (400 MHz) is used.

Table 4-8 shows discrepancies between AraSimLite2 and AraSim results. AraSim evaluates
the bicone to be 20.1% better than Candidate 6. However, AraSimLite2 evaluates Candidate 6 to
have 39.7% better fitness than the bicone. This suggests that AraSimLite2 does not adequately
represent AraSim well enough to be optimize an antenna that out performs the bicone. Future work
(section 5.2) should implement the GA with AraSim to best optimize an antenna for ARA neutrino

detection.

5 Conclusions
5.1 Antenna Recommendations

The ARA application calls for wideband antennas operating in the 150-850 MHz frequency
range [1]. A discone antenna is low-gain with 10:1 bandwidth [31]; well-suited for the ARA
application. An XFdtd ARA frequency band discone model is shown in Figure 5-1 The discone
has dipole radiation characteristics at 250-500 MHz and increases directivity from 0 dBi to 5 dBi
in the 90° - 180° range as frequency increases to 1000 MHz, see Figure 5-2. The standing-wave

ratio is less than 2.0 across the 220-1000 MHz band, see Figure 5-3.
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Figure 5-1: Discone model constructed in XFdtd.

Discone Gain at ¢ = 0

00
330° 10dBi._ 30
0 dBi
300° 60°
—f=250 MHz
i |- - £ =500 MHz
270 90 f = 750 MHz
-------- f = 1000 MHz
240° 120°
210° 150°

180°

Figure 5-2: XFdtd Discone Gain, 250-1000 MHz
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Figure 5-3: XFdtd Discone Standing Wave Ratio vs. Frequency

The discone antenna meets ARA project frequency requirements and the radiation pattern is
directed between 90° and 180° for frequencies greater than 500 MHz. The discone diameter is

40 cm, which exceeds ARA’s 10 cm diameter borehole.

5.2 Future Work
5.2.1 AraSim Integration

Excessive simulation times (30 minutes per radiation pattern) prevented AraSim objective
function optimization. Genetic algorithm and AraSim implementation on a high-performance
computing cluster allows parallelization. AraSim objective function optimization yields candidate

solutions with all ARA parameters (Table 3-1).
5.3 Concluding Remarks

A genetic algorithm that optimizes radiation patterns was developed. It is interfaced with
neutrino simulation tools AraSimLite and AraSimLite2 to produce candidate radiation patterns for

neutrino detection. The candidate solutions focus radiation in the 90° < 68 < 180° range,
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suggesting that downward directed antennas should be used in the ARA experiment. ARA
antennas must be broadband; hence, a discone antenna is recommended. However, further analysis

is required to develop a discone antenna that meets ARA frequency band and size constraints.
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Appendix A: Spherical Harmonic Representations of Antenna Power
Patterns

An antenna power pattern G (6, ¢) is modelled as the weighted sum of spherical harmonics.
Y/™(6,®) is the [, m-order complex spherical harmonic. Under the condition that m = 0,
spherical harmonics Y,°(6,¢) are real and ¢-independent, or azimuthally symmetric. An
azimuthally symmetric power pattern can be written

G(O) = apYL(0) + a,YL2(8) + - a,Y,2(6), 0 € [0,m] (A-1)

T is the expansion vector and each element of @ is an expansion

where a = [ay,aq, ..., a,]
coefficient. Antenna power patterns are subject to conservation of energy, placing constraints on
expansion coefficients. An energy conserving power pattern should have non-negative gain and

obey the relation

i
AQ =

(A-2)

Dmax

where AQ) is the beam solid angle and D,,, 4, is maximum directivity of the power pattern G () [31].
The beam solid angle of a power pattern is defined

1
AQ = jg(@,(p) dQ = mj6(9,¢) dQ (A-3)

Q Q

and the maximum directivity is defined

G,
Dy = —X 1207 P [e( DI hce <1 (A-4)

where €, is the radiation efficiency of the antenna.

63



For an azimuthally symmetric radiation pattern represented by spherical harmonics

1
= — 0= Y9 Y0 Y2(6)1dQ
@) §©@ = 5 [[akE ) + a,0) + - auk2(6)]
Q Q
o
- jaOYOO(e) 4o + jalYlo(H) 40 + ---+jany,9(9) a0
ErDmax
-Q) Q Q
o
- aOJYOO(H) a0 + alelo(H) dn+---+anjy,9(9) dal,
ErDmax

Q Q Q

and letting,

Sy = er?(Q) dQ, S = [Sg,S1, ey SplT-

Q
Equations A-5 and A-6 lead to
p= [agso + ais; + -+ + aps,] L aTs
— eee = a S.
ErDmax ao SO al Sl an Sn ErDmax

The vector s is evaluated numerically as,

leading to,

§=[2vn,0,..,0]"
1 N ays
AQ = ars = —>0
ErDmax GTDmax

Enforcing equation A-2 on equation A-8,

apSo 4r

AQ =

GT Dmax Dmax

(A-5)

(A-6)

(A-7)

(A-8)
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and solving for a,,

4me, 4me,
ap = = = 2\Vme, = 2\
0 So 2\/7? r

Because €, is bounded on [0, 1], realistic antenna power pattern must have a, < 2y and
non-negative gain. For a well-designed antenna, €, = 1, leading to the constraints
G(8) = apYL(0) + a;YL2(0) + - a,¥2(8) =0, 0 € [0,m]
and
a, = 2\m
If an a leads to a negative G(0), a new vector a’ is made to preserve the features of the original
vector @ while obeying the above constraints. Under the condition min[G(8)] < 0, an offset can

be introduced to G (8) by subtracting min[G (8)], scaled by 2+/m from the a, element

ajy = ay — 2+/T min[G(6)]. (A-9)

This operation removes all negative values from the power pattern, but no longer obeys
conservation of energy if a, > 2+/m. That is, the power radiated by an antenna with this pattern
would be greater than the power input to the antenna. To preserve the characteristics and positivity

of the power pattern, each coefficient should be scaled by a positive constant C that restores a,

to 2.

ay = Cay = C(ay — 2v/rmin[G(0)]) = 2vr (A-10)

Solving for C,

2T
- Vr

" @y, — 2¥mTmin [G(O)] (a-11
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and if ay = 2Vm

1

¢= 1 —min [G(0)]

(A-12)

a' is then,

Qg

a, — 2v/mmin[G(6)] 1 — micrlll[G(Q)]

S 1 a _
¢ T T min[c@)] ;1 = : (A-13)

a, a,

|1 — min [G(0)]

In the context of optimization, it is beneficial to reduce the dimensionality of the
optimization problem, decreasing the size of the parameter space. Because the radiation efficiency

€, = 1, it is a valid assumption to set a, = 2+/m. Thus, a power pattern becomes

G(8) = 2vrY2(0) + a,YL(6) + -+ a,Y2(0), 0 € [0,m7] (A-14)

anda = [ay, ay, ..., a,|". If Aresults in G(8) < 0 on 8 € [0, ], the following transformation will

remove any negativity while preserving the characteristics of the power pattern

aq
1
i = _ “2 (A-15)
1 —min [G(0)]
an
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