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Abstract 
 

The Askaryan Radio Array (ARA) is an experiment that detects ultra-high energy (> 10$%𝑒𝑉) 

neutrinos. Neutrino interactions within the Antarctic ice sheet produce electromagnetic signals in 

the 150-850 MHz radio frequency (RF) band, detectable by RF antennas. Antennas must be 

broadband, azimuthally symmetric, and conform to 10 cm diameter boreholes. These constraints 

create a unique set of antenna design parameters at approximately 1 meter wavelengths. This 

project’s goal is to improve ARA neutrino sensitivity by optimizing antenna radiation patterns. 

Radiation patterns are modelled by spherical harmonics and expansion coefficients. A genetic 

algorithm is created to find sets of expansion coefficients that maximize detector effectiveness. 

Two neutrino simulation tools are created to evaluate antenna performance. Optimization results 

suggest downward directed radiation patterns with main lobes from 90∘ < 𝜃 < 120∘ maximize 

neutrino detection. This feature and broadband requirements lead to the recommendation of 

a discone antenna for the ARA detector.   
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1 Background and Motivation 
1.1 Project Overview 

Ultra-high energy (UHE) neutrinos (10$% − 10.$ eV) are neutrally charged, weakly 

interacting particles that travel through space from energetic cosmic events. Due to their inert 

nature, neutrinos are the only feasible known particles for the study of ultra-high energy sources 

more than approximately 107 parsecs (1 parsec ≈ 30.8 × 104 km) from Earth [1]. However, these 

same properties complicate UHE neutrino detection. There is an expected interaction rate of less 

than 1 UHE neutrino per giga-ton of matter per year [1]. Therefore, large and highly sensitive 

detectors are required.  

Neutrino-ice interactions produce in-phase radiation between a few MHz and 1 GHz. 

In-phase radiation, called coherent radiation, adds constructively. This makes the signal 

distinguishable from noise. Antennas convert this radiation into electrical potential difference. This 

project focuses on improving the antennas in the Askaryan Radio Array (ARA), a neutrino 

experiment located in Antarctica [2]. Genetic algorithms (GA) optimize radiation patterns to 

maximize neutrino detection. Multiple neutrino interaction simulators (discussed in Chapter 2) 

interface with the GA to perform the optimization. 

Chapter 1 of this paper discusses the importance of UHE neutrinos, detection methods, and 

current detection experiments. Chapter 2 defines the genetic algorithm and describes optimization 

techniques and genetic algorithm verification. Chapter 3 discusses neutrino detection simulators. 

Chapter 4 presents optimization results. Chapter 5 suggests possible antenna designs and future 

work.  
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1.2 Importance of Cosmic Neutrinos 

Parts of the high-energy universe are not viewable using traditional photon telescopes [3]. 

Since neutrinos are uncharged, magnetic fields do not affect their propagation direction. Neutrinos 

are weakly interacting; hence, neutrino absorption while traveling to Earth is rare. Therefore, 

neutrinos provide unique information about the universe since they travel directly from their 

source, unimpeded, to Earth. Ultra-high energy neutrino flux can provide information about ultra-

high energy particle accelerators [4]. 

1.2.1 Astrophysical Neutrinos 

IceCube (section 1.3.1) was the first experiment to detect astrophysical neutrinos with 

energies 1015 - 1017 eV.  These are the highest-energy neutrinos detected [5]. These neutrinos are 

produced outside of the galaxy by two types of sources: cosmic ray accelerators and cosmic ray 

reservoirs. Cosmic-ray accelerators such as blazars and gamma-ray bursts produce neutrinos 

directly. Blazars are galaxies with black holes at their centers and emit high energy particles. In 

cosmic-ray reservoirs, neutrinos are produced from cosmic rays while still confined in the source. 

Examples of cosmic ray reservoirs include starburst galaxies and galaxy clusters [4].  

1.2.2 Cosmogenic Neutrinos 

Neutrinos can provide information about rare particles known as ultra-high energy cosmic 

rays (UHECR). UHECRs have an energy density comparable to the cosmic microwave 

background (CMB), a remnant of the early universe. Studying UHECRs provides information 

about their sources [6]. 

UHECRs interact with cosmic microwave background photons to produce cosmogenic 

neutrinos, among other particles [7]. This phenomenon is called the GZK effect. Measuring the 

cosmogenic neutrino flux tests UHECR production and propagation models. Their flux and energy 
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composition depends on UHECR composition (protons or heavier nuclei), the red shift of UHECR 

sources, and how UHECRs are accelerated [6]. Neutrino experiments discussed in section 1.3 

measure the maximum cosmogenic neutrino flux value [4]. 

1.3 Landscape of Neutrino Detection 

1.3.1 IceCube 

The IceCube Neutrino Observatory is a neutrino detector located near the South Pole. 

IceCube detected over 80 high-energy neutrinos, including the first high-energy astrophysical 

neutrinos, with energies between 100 TeV and a few PeV [8]. For reference, 1 PeV is two orders 

of magnitude greater than energies generated in the Large Hadron Collider (13 TeV) at CERN [9]. 

IceCube uses optical sensors to monitor 1 km3 of ice for neutrino interactions. The detector is 

located approximately 2.5 km below the ice surface [8]. IceCube has detected the highest energy 

neutrinos to date (1 PeV) but has yet to detect an ultra-high energy cosmogenic neutrino [10].  

1.3.2 Askaryan Effect 

In 1962, Gurgen Askaryan predicted that neutrally charged particles such as neutrinos could 

create coherent radio emission. When a neutrino collides with a nucleon, a particle shower can 

occur. Through processes such as Compton scattering and annihilation of positrons, this shower 

of secondary particles acquires a 20% net negative charge asymmetry [11]. If the charge is 

traveling faster than the phase velocity of light in the medium, the medium will emit 

electromagnetic radiation. The signal is enhanced in dielectrics with high densities. For 

wavelengths longer than the shower in the transverse direction, LT (typically 3-5 cm in ice), the 

signal is coherent (Figure 1-1) at frequencies less than 1 GHz. Coherent signals are distinguishable 

from noise. Therefore, in-ice Askaryan radiation detectors must receive signals less than 1 GHz.  
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The Askaryan effect was first observed in a beam test at SLAC National Accelerator 

Laboratory, originally named Stanford Linear Accelerator Center, in 2001 [11]. The experiment 

produced a time-domain signal shown in Figure 1-2. 

 

 Neutrino detection experiments commonly use ice due to its long attenuation length 

(approximately 1000 m at 300 MHz [12]). Attenuation length is the travel distance that decreases 

Figure 1-2: Radio signal from Askaryan Radiation measured 
at SLAC National Accelerator [33]. 

Figure 1-1: Illustration of transverse direction of a particle shower [32]. 
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signal power by 1/e. Long attenuation lengths allow for neutrino detection in large volumes. 

Antarctica’s large quantity of ice creates a large volume for neutrino interactions to occur, making 

it an ideal location for neutrino experiments.  

1.3.3 The Antarctic Impulsive Transient Antenna 

The Antarctic Impulsive Transient Antenna (ANITA) is an airborne neutrino detection 

experiment. ANITA flies 35-37 km above the Antarctic continent carried by a NASA 

long-duration balloon. ANITA observes signals using vertically and horizontally polarized horn 

antennas operating from 200 MHz to 1200 MHz. ANITA observes approximately 1.5	 × 	107 km3 

of ice  [11]. Antarctic weather conditions limit ANITA’s flight duration to approximately 30 days 

per year.  

1.3.4 The Askaryan Radio Array 

The Askaryan Radio Array (ARA) is a neutrino detection experiment sensitive to 

cosmogenic neutrinos located near the South Pole. ARA37, the completed ARA detector, will 

consist of 37 stations in a triangular array with a 2 km separation distance, shown in Figure 1-3. 

There are currently five ARA stations deployed as of January 2018. 
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Each ARA station consists of 16 antennas distributed among four “strings”. Each string 

contains four antennas in a 10 cm diameter borehole located 200 m below the ice surface. 

Figure 1-4 shows the string arrangement. Antenna pairs are vertically and horizontally polarized. 

Each station has two additional strings of antennas for calibration. Fiber optic cable transmits 

antenna signals to trigger and data recording electronics. A typical trigger requires a received 

power threshold 5 times greater than the mean power in 3 or more of the 16 station antennas [11]. 

When this criterion is met, a trigger will signal a digitizer to record data. Measured Askaryan 

radiation can be traced to determine neutrino event location and ultimately the neutrino’s 

propagation direction. This project optimizes the vertically polarized antennas radiation patterns 

to improve neutrino detection. The baseline design for a single ARA station is shown in Figure 1-4. 

Figure 1-3: Deployed and planned ARA station locations, January 2018 [2]. 
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ARA and IceCube are sensitive to neutrinos with different energies: 1015 to 1017 eV  [8] and 

1016 to 1019 eV [2], respectively. Each experiment attempts to determine the neutrino flux at their 

respective energy ranges. ARA covers less ice than ANITA but ANITA is limited to 30-100 day 

flights due to extreme weather in Antarctica. In a 30-day flight, ANITA-II was expected to detect 

5.8 neutrinos while ARA37 is expected to detect 48.7 neutrinos in a year, according to the most 

optimistic models [2].  

1.4 In-Ice Neutrino Detection Geometry 

The Antarctic ice sheet and Askaryan radiation create a specific geometry for in-ice neutrino 

detection. Neutrinos traveling upward with respect to the ice surface are expected to interact with 

the Earth prior to reaching the Antarctic ice sheet. Neutrinos traveling downward with respect to 

the ice surface are unlikely to interact with the ice sheet prior to passing the detector (Figure 1-5). 

Figure 1-4: Baseline design of an ARA station [2]. 
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These conditions decrease the likelihood of detecting neutrinos coming from below and above the 

detector, respectively.  

Askaryan Radiation is emitted in a cone defined by a medium-dependent angle. The 

Cherenkov angle defines this cone,  

cos(𝜃<=>?) =
1
𝑛𝛽 (1-1) 

 

where 𝜃<=>? is the Cherenkov angle, 𝑛 is the medium's refractive index, and 𝛽 is the particle 

shower's velocity relative to the speed of light in vacuum [7]. Antarctic ice refractive index 

decreases with depth [12], which computationally intensifies radio propagation modeling.  

 Figure 1-5 shows three types of neutrino interactions. The interaction location is depicted 

with a bold dot. The interaction with the horizontal neutrino path is detectable because it interacts 

with the ice and the radiation travels to the antenna. A neutrino produces radiation when it interacts 

with a proton or neutron. Hence, interactions occur within the volume of a material rather than the 

surface. Askaryan radiation from the interaction with the Earth is not detected (red X) because the 

radio signal is absorbed in rock. The downward traveling neutrino is unlikely to be detected 

Figure 1-5: Multiple neutrino entry locations and interactions. 
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because it will likely pass the detector before interacting with the ice. This project aims to match 

the in-ice neutrino geometry to the ARA detector design. 

1.5 Why apply optimization? 

Neutrino detection is improved by maximizing ARA antenna gain at neutrino incident angles. 

When analytical solutions do not exist, optimizing radiation patterns enhances antenna 

performance.  

2 Optimization and the Genetic Algorithm 
2.1 Introduction to Optimization and Mathematical Optimization 

Optimization is the process of selecting the best solution to a problem among a set of 

potential solutions [13]. The goodness of a particular solution is described by an objective function 

or performance index [14]. Mathematically, optimization is the process of solving the problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑜𝑟	𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒	𝑓(𝑥⃑), 𝑥⃑ = [𝑥$, 𝑥.,… , 𝑥>]Q ∈ 	ℝ> (2-1) 

while satisfying equality or inequality constraints on the column vector 𝑥⃑  [15]. Each element 𝑥T 

of 𝑥⃑ is a design variable, 𝑓(𝑥⃑)	is the objective function, and the optimal solution 𝑥⃑∗ is the vector 

that maximizes/minimizes the objective function while satisfying all constraints. The objective 

function 𝑓(𝑥⃑) can be analytically defined, a simulation result, or experimental data.  

 For example, consider the problem 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒	𝑓(𝑥⃑) = 𝑥$. + 𝑥.., 𝑥⃑ = [𝑥$, 𝑥.]Q ∈ 	ℝ. (2-2) 

subject to constraint  

𝑨𝑥⃑ ≥ 1, 𝑨 = 	 Y1 0
0 1Z (2-3) 
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The constraint can be rewritten 

The objective function has a global minimum 𝑓(𝑥⃑ = 0) = 0 but this solution does not satisfy 

equation 2-3. The optimal solution is 𝑥⃑∗ = [0.5, 0.5]Q because it minimizes the objective function 

while satisfying constraints. Figure 2-1 shows the objective function contour map, the boundary 

set by the constraints, and the optimal solution location.   

 Many mathematical techniques and algorithms help find solutions to optimization 

problems. Optimization methods generally fall into two categories: gradient-based and 

gradient-free. Gradient-based optimization uses derivative information from the objective function 

to find minima or maxima. Gradient-free optimization uses an algorithm or probabilistic model to 

𝑥. ≥ 1 − 𝑥$ (2-4) 

Figure 2-1: Contour map of the objective function, the constraints boundary (red line), 
and the optimal solution (black cross). 
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find solutions. An example of gradient optimization in an unconstrained problem is the method of 

steepest descent [16]. The gradient of the objective function 𝛁𝑓 is calculated at a point. The 

gradient 𝛁𝑓 is in the direction of steepest ascent normal to a contour. A new point is chosen in the 

direction of 𝛁𝑓 or −𝛁𝑓 to approach a maximum or minimum, respectively. The method of steepest 

descent is iterative, with each iteration approaching a local solution. Convergence to a global 

solution is not guaranteed unless the search begins in the neighborhood of the global solution [16]. 

The method of Lagrange multipliers is commonly used in constrained gradient optimization [13, 

15, 16].  

Gradient search methods can converge quickly, are computationally efficient, and 

guarantee a local solution is found [15]. However, the derivative of the objective function is not 

always available or continuous. In the case of a simulation, a potential solution vector 𝑥⃑\ is mapped 

to 𝑓]𝑥⃑\^, but the closed-form expression for the objective function 𝑓(𝑥⃑) is not explicitly defined. 

Noisy objective functions can have derivatives with large discontinuities. In such cases, gradient-

free optimization is preferred over gradient-based searches [14]. Gradient-free optimization 

methods leverage the speed of modern computing to test potential solutions on 𝑓(𝑥⃑). The simplest 

optimization method is a brute-force approach, in which 𝑓(𝑥⃑) is evaluated at every potential 

solution on a user-defined domain. For high-dimensionality problems, brute force is impractical 

due to the large number of potential solutions. Other types of gradient-free optimization include 

random searches, pattern searches, and Bayesian optimization [17]. 

2.2 Optimization Algorithms Inspired by Real-World Processes  

Several optimization algorithms exist that replicate nature’s ability to find optimal states 

in complex systems. Examples of optimization algorithms inspired by real-world processes include 

swarm algorithms, simulated annealing, and evolutionary algorithms. Each algorithm relies on 
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techniques and probabilities to find optimal solutions instead of gradient information. This allows 

for optimization with noisy or multi-modal objective functions. Furthermore, optimization is 

possible when a closed-form expression for 𝑓(𝑥⃑) does not exist [18]. 

The biological dynamics such as bird flocking, fish schooling, and insect swarming inspire 

swarm algorithms [19]. Particle swarm optimization is a successful implementation of swarm 

optimization. A set of potential solutions 𝑃 (called a population) is randomly created. Each 

potential solution 𝑥⃑T (called an agent) in 𝑃 is evaluated on the objective function 𝑓(𝑥⃑). The best 

fitness in the entire group is recorded, and each agent’s personal fitness is recorded. A velocity 

vector 𝑣 is calculated from each agent to determine its location in the next iteration. Each agent 

moves towards its personal best location and the best location in 𝑃. Movement allows for 

exploration of the parameter space. Each agent will eventually occupy the same location, 

indicating convergence. This location is the optimum solution 𝑥⃑∗	 [19].  

Metallurgical annealing inspires the simulated annealing algorithm. In metallurgical 

annealing, samples are repeatedly heated and cooled to reduce defects in a material [20].  

Simulated annealing algorithms are useful in problems with high-dimensionality and noisy 

objective functions. The algorithm is unlikely to find a global solution but has a high probability 

of finding a high-quality solution [18]. Simulated annealing creates a potential solution 𝑥⃑T (called 

the sample) and evaluates this solution on the objective function. The sample starts at simulation 

temperature 𝑇. The solution is randomly modified and evaluated on the objective function. It will 

improve or diminish in quality compared to the previous state, which is summarized by the quantity 

Δ𝐷. Δ𝐷 is negative for an improved solution, and positive for a diminished solution. The algorithm 

will accept the change in state if 𝑒
de
f > 𝑅(0,1), where  𝑅(0,1) is a random number on the interval 

[0, 1].  The algorithm is more likely to accept a diminished solution at high temperature and reject 
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one at low temperature [18]. Over time the sample is cooled, forcing the algorithm to only accept 

changes in state that increase solution quality. This forces the algorithm to converge to a solution. 

The initial state at high temperature allows the algorithm to search the solution space, and 

convergence is guaranteed as the sample cools [20].   

Evolutionary algorithms are a class of gradient-free optimization algorithms that are 

inspired by biological evolution [13, 17]. Evolutionary algorithms create a set of potential solutions 

𝑃 called a population and perform operations on 𝑃 to improve the solution quality for the entire 

set. These operations generate new solutions by combining features of higher quality solutions in 

𝑃. This simulates the mating of fit individuals in a biological population. The entire population 

evolves over several generations, each time improving solution quality [21]. NASA successfully 

used evolutionary algorithms to generate unique antenna designs subject to radiation pattern 

constraints [22].  

2.3 Introduction to Genetic Algorithms 

A genetic algorithm is an optimization technique modelled after modern genetic theory. In 

a genetic algorithm, a random set of potential solutions to a problem is produced. This set is called 

a population 𝑃. Each potential solution in 𝑃	is a chromosome. The genetic algorithm evaluates 

each chromosome on the objective function and assigns a fitness score. Some chromosomes are 

eliminated in favor of replacements. The remaining members are then selected using a decision-

making process called a selection method, which pairs chromosomes together for reproduction. 

Paired chromosomes are called parents. Through another process called the reproduction method, 

the parents create one or two new chromosomes, called children. These children are evaluated on 

the objective function, assigned a fitness score, and inserted into the population. Children are 

produced until the original size of the population is restored. This new population represents the 



 18 

next generation of potential solutions. The process repeats until a user-defined convergence 

condition is met.  

Genetic algorithms model natural selection by simulating ‘survival of the fittest’ evolution. 

Chromosomes with low fitness scores are eliminated and better-performing chromosomes have 

increased probability for parent selection. Children may be randomly mutated prior to evaluation, 

resulting in features contained in neither parent. This process introduces new genetic material to 

the population and promotes exploration of the parameter space. Over several generations, the 

population quality will increase because highly-fit chromosomes share their genetic information 

with the rest of the population.  

Genetic algorithms have successfully solved optimization problems in real-world 

applications [23]. Haupt and Haupt [21] summarize the genetic algorithm’s advantages as an 

optimization tool, including: 

• Derivative information is unnecessary 

• A wide domain of the objective function’s surface is searched and sampled 

• Optimizes surfaces where concavity is not guaranteed 

• Provides several potential solutions to the objective function 

• Works with constrained search parameters 

• Works with numerically generated data, experimental data, or external simulation tools 

Genetic algorithms are a useful tool for optimization where only the relative quality of a solution 

is known. However, they require many objective function evaluations to assign fitness scores to 

chromosomes [24]. This can result in long optimization times for problems with computationally 

involved fitness assignments, such as external simulation tools. Fitness assignments are 

parallelizable, reducing optimization time on parallel-capable machines. 
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2.4 The Chromosome Genotype and Phenotype 

Optimization variables must be compatible with the genetic algorithm. In binary string 

genetic algorithms, all optimization parameters are represented by a single binary string. The 

genetic algorithm manipulates the binary string rather than the optimization variables directly. The 

programmer decides how this binary string maps to the optimization problem. The binary string is 

the chromosome genotype. The chromosome phenotype are the optimization variables evaluated 

on the objective function. Genetic algorithms are not constrained to binary string genotypes. 

Continuous variable genotypes are often used because they map to the optimization problem more 

directly [21]. Binary string and continuous variable genotypes are both referred to as 𝑥⃑ hereafter.  

2.4.1 Binary String Genotypes 

Consider the problem of maximizing a function 𝑓(𝑥⃑), 𝑥⃑ = [𝑥$, 𝑥.]Q ∈ 	ℝ. constrained to 

the interval 𝑥⃑ ∈ 	[−1, 		1]. In a binary string genetic algorithm, optimization parameters 𝑥$  and 𝑥. 

are encoded into a binary string input for the genetic algorithm [21]. Parameter resolution is 

determined by  

𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = l=mnT>	oTp?
.q

 (2-5) 

where 𝑛 is the number of bits used to represent a parameter. If both parameters are encoded into 

an 8-bit binary string, the parameter resolution is .
.r
	 = 	7.8125 × 10tu. The parameters map to 

binary strings: 

𝑥$ = −1.0																		 → 					 𝑥$w = 0𝑏00000000 
 

𝑥. = +0.9921875			 → 					 𝑥.′ = 0𝑏11111111 
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The entire genotype is the concatenation of the two binary strings [𝑥$w 	𝑥.′]. A point is then mapped 

to a binary string: 

𝑥⃑ = 	 [−1.0,+0.9921875]z → 0𝑏000000011111111 
 

In this example, the string ‘000000011111111′ is the genetic algorithm genotype, but the vector 

𝑥⃑ is the phenotype. The objective function evaluates the phenotype, but the genetic algorithm 

operates on the binary string. Potential solutions are discretized in 7.8125× 10tu steps and the 

parameter space is limited to 2$7 = 65536 unique solutions. Longer binary strings are used for 

greater precision.  

2.4.2 Continuous Variable Genotypes 

In continuous variable genotypes, the optimization parameters map to continuous 

variables. Considering the same problem as before, the optimization parameters now map to 

continuous variables: 

𝑥 = −1 → 𝑥w = −1.0 

𝑦 = +1 → 𝑦w = +1.0	

 

The parameter resolution is limited by the computer’s resolution. One benefit of the continuous 

variable genotype is close or even exact mapping between the genotype and phenotype [23]. 

However, the parameter space becomes much larger. In binary strings, the number of possible 

solutions is limited by the length of the genotype, but there are nearly infinite potential solutions 

with a continuous variable genotype. Continuous variable genotypes allow for wider variety of 

crossover and mutation processes, discussed in sections 2.6 and 2.7. 
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2.5 Selection Methods 

The selection method is responsible for choosing parents that will pass on genes to offspring. 

Selection methods should, on average, favor better-performing individuals in a population. 

However, it is important to maintain diversity in a population to prevent premature convergence 

to local solutions [25].  Selection methods can choose less fit solutions to prevent one particular 

solution from dominating the entire population.  

 Selection methods are separated into two categories: fitness proportionate and elitist 

selection. In a fitness proportionate selection scheme, the probability that an individual is selected 

to become a parent is proportional to its fitness score. Better-performing individuals are more 

likely to be selected than other members of the population. If the fitness of a high-performing 

individual is not suitably large, the probability that this individual is not selected for reproduction 

increases. This could result in a low-quality final solution. The elitist selection scheme attempts to 

remedy this problem by placing more pressure on the selection method to choose fit individuals 

and prevent unfit individuals from passing on genes. Intentional bias towards better solutions is 

referred to as elitism. Two selection methods are discussed: the roulette method, a 

fitness-proportionate scheme, and tournament selection, an elitist scheme.  

2.5.1 Roulette Selection 

 The roulette selection method imitates the random nature of a roulette wheel. Each individual 

in a population is assigned a section of a roulette wheel with size directly proportional to the 

individual’s fitness score, and the wheel is “spun” to randomly select an individual. The roulette 

selection method is illustrated in Figure 2-2.  
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The number S is equal to the sum of the population’s fitness. Each member is allocated a portion 

equal to the size of its fitness score on the interval [0, S]. A marker 𝑚$ is chosen from a real 

uniform distribution on [0, S]. 𝑚$ selects the individual. In genetic algorithms that use two parents 

for reproduction, the roulette method is implemented as follows [26]:  

1. 𝐹> is the fitness of the 𝑛~� individual in the population. In a population of 𝑁 individuals, 

the sum of fitness scores 𝑆 is  

 𝑆 = 	�𝐹>

�

>�$

 (2-6) 

2. Random markers 𝑚$ and 𝑚. are chosen from a real uniform distribution on the 

interval [0, S], where 𝑚$ < 𝑚..  

3. The first selected individual is the 𝑖~� member of the population, where 𝑖 is the first integer 

index to satisfy the criteria 

 �𝐹>

T

>�$

≥ 𝑚$ (2-7) 

4. The second selected individual is the 𝑗~�member of the population, where 𝑗 is the first 

integer index to satisfy the criteria 

 �𝐹>

\

>�$

≥ 𝑚. (2-8) 

 

 

Figure 2-2: Roulette selection of an individual from a population. 
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The probability that the 𝑖~� individual in a population is selected 𝑃T is 

 𝑃T =
𝐹T
𝑆  (2-9) 

 
𝑃T is proportional to an individual’s fitness 𝐹T, making this selection method fitness 

proportionate [27]. This process is equivalent to placing two markers randomly on a roulette wheel 

and spinning the wheel once. It is convenient to implement in software because only one running 

sum must be performed to select both individuals. Once the first individual is selected, the program 

continues adding fitness scores until the second marker has been reached. A potential downside is 

the case where 𝑚$ + 𝑚. < 𝐹T. In this case, one individual could meet both criteria, and be selected 

as both parents. This resulting offspring would be identical to the parent. If one individual is 

particularly fit, this might lead to loss of diversity early in the algorithm, where each offspring is 

a copy of this parent. This would result in premature convergence without adequately exploring 

the solution space. To prevent this from occurring, selection should be performed without 

replacement [21]. That is, once the first parent is chosen, it is temporarily removed from the 

population until a second parent has been chosen, preventing one parent from dominating the 

selection process.  

2.5.2 Tournament Selection 

 The tournament selection method compares individuals against one another. In the simplest 

tournament, two members of the population are selected at random with equal probability. The 

fitness scores of these individuals are directly compared, and the individual with the larger fitness 

score is selected to reproduce [21]. Guaranteed selection of the fittest individual classifies the 

tournament method as elitist. The benefit of an elitist scheme is that it prevents loss of good genetic 

material. A single tournament is called a 𝑘-way tournament, where 𝑘 is the number of individuals 
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competing in the tournament.  The tournament described above is a 2-way tournament; only two 

individuals compete. A 𝑘-way tournament can be implemented in software as follows [26]: 

1. Generate an array A of all potential individual indices for population of 𝑁 individuals. 

𝐴 = {0, 1, 2,… , 𝑁 − 1} 

2. Shuffle the array A. 

3. Read the first 𝑘 indices from the shuffled array and place the individuals of the population 

at these indices in a tournament. 

4. Compare the fitness scores of each individual in the tournament and choose the fittest 

individual for reproduction. 

Multiple tournaments can be held with or without replacement to choose several individuals for 

reproduction. The probability that an individual is selected depends only on the individual’s rank 

in comparison to the other members of the tournament pool. In general, the probability that an 

individual is selected to enter the tournament pool is k/N. This means the probability that the fittest 

individual in the entire population is selected for reproduction is k/N. This allows the programmer 

to control the level of diversity within the population. In optimization problems with lengthy 

fitness computation times or where a local maximum/minimum is desired rather than a global 

maximum/minimum, set k sufficiently large to promote rapid convergence to a local solution [27]. 

An excessive k value can lead to loss of population diversity because it increases the probability 

that only the most fit individual chosen.  
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Figure 2-3 shows an example selection of two parents with two 5-way tournaments. Ten 

chromosomes are chosen randomly from the population without replacement. The fittest 

chromosomes in each tournament are selected for reproduction.  

2.6 Reproduction Methods 

Reproduction methods control how genes are passed from parents to offspring. Genetic 

algorithms typically use only two parents for reproduction, but high quality solutions can be 

produced by using more than two parents to produce a single offspring [23]. For this project, 

crossover methods are limited to two parents. 

2.6.1 Single-Point Crossover 

Single-point crossover generates at most two different children from two different parents. 

A random integer marker is chosen from a real uniform distribution on [0, 𝐿�]. Let 𝑝$and 𝑝. 

represent the parents, and 𝑐$ and 𝑐. represent the children. Before the marker location, the 

genotype of 𝑐$ will match the genotype of 𝑝$, and the genotype of 𝑐. will match the genotype of 

𝑝.. After the marker, the genotype of 𝑐$ will match the genotype of 𝑝., and the genotype of 𝑐. will 

match the genotype of 𝑝$ [23]. Figure 2-4 shows this process. 

Figure 2-3: Two 5-way tournaments select two individuals for reproduction. 
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2.6.2 Multi-Point Crossover 

Multi-point crossover expands upon the same process used in single-point crossover, but 

with an arbitrary number of crossover points. Children receive genetic material from a unique 

parent. Each time a crossover marker is reached, a child receives its genetic material from the other 

parent [23]. This is implemented by generating an array A of all potential marker indices 

𝐴 = {0, 1, 2,… , 𝐿� − 1} 

Figure 2-5: Multipoint crossover with crossover points at poistions 3 and 6. 

Figure 2-4: Single-point crossover with crossover point at position 3. 
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where 𝐿� is the genotype length. The array is shuffled. If n crossover points are desired, the first n 

values are read from the shuffled array. Figure 2-5 illustrates a two-point crossover with crossover 

points at position 3 and 6.  

 

2.6.3 Uniform Crossover  

Uniform crossover interleaves the parents’ genetic information randomly among the two 

children. At each gene location, a random number is drawn from a real uniform distribution on the 

interval [0, 1]. If the number is greater than a threshold t = 0.5, the child 𝑐$ inherits the gene from 

parent 𝑝$, and 𝑐. receives the gene from 𝑝.. If the number is below the threshold, 𝑐$	inherits from 

𝑝., and 𝑐. inherits from 𝑝$ [23]. With a threshold of 0.5, genes from both parents are randomly 

and uniformly interleaved within the children. The threshold is adjusted to promote more 

inheritance from a single parent. Figure 2-6 shows an example uniform crossover with 𝑡 = 0.5. 

 

 

 
 

Figure 2-6: Example uniform crossover with t = 0.5. 



 28 

2.6.4 Continuous Variable Average Crossover 

This crossover type is unique to continuous variable genotypes. In continuous variable 

average crossover, each gene is averaged between the two parents to create one or two 

children [21]. For each gene, the weighted average of the parent genes is calculated and is assigned 

to the child. The new gene is biased towards a particular parent with a coefficient 𝑎 which lies on 

the interval [0.5, 1]. The genotype of two children produced through floating point average 

crossover is  

 

𝑥⃑<� = 𝑎𝑥⃑�� + (1 − 𝑎)𝑥⃑�� 

𝑥⃑<� = (1 − 𝑎)𝑥⃑�� + 𝑎𝑥⃑�� 

 

If 𝑎 = 0.5, the children are identical and located halfway between each parent. If 𝑎 = 1, 𝑐$ is 

identical to 𝑝$ and 𝑐. is identical to 𝑝..  

2.7 Mutations 

A mutation is an operator that acts on a chromosome’s genotype. It randomly introduces 

new genetic material to the population, encouraging exploration of the parameter space. Each gene 

in the genotype has probability 𝑝m of being mutated. In many genetic algorithms, 𝑝m is equal to 

1/𝐿�, where 𝐿� is the genotype length. This encourages mutation of only one gene at a time [21]. 

If 𝑝m is too large, it can change too much of the genotype at once, potentially moving a solution 

away from a maximum/minimum. In binary string genotype representations, the mutation inverts 

a bit at the mutation location, shown in Figure 2-7. 
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Continuous variable genotypes enable more complex mutations. Rather than inverting a 

bit, a new gene is chosen at random from a Gaussian distribution. If the gene 𝑥T has been chosen 

for mutation, the new gene is chosen at random from a Gaussian distribution with mean 𝜇 = 𝑥T 

and variance 𝜎., where 𝜎 is the standard deviation. The variance is user-defined and depends on 

the optimization problem [23]. The variance can be increased or decreased to promote searching 

different sizes of the parameter space.  

2.8 Genetic Algorithm Implementation 

A genetic algorithm written in C++ and is used for optimization. The continuous variable 

genotype is chosen for ease of implementation. The first iteration of the genetic algorithm, referred 

to as GA1, is outlined below. The genetic algorithm operates on fixed population size of 

𝑁 chromosomes for 𝐺 generations, where 𝑁 and 𝐺 are user inputs.  

1. Generate a population of 𝑁 random chromosomes. 

2. Score the population on the objective function. 

3. Generate 𝑁/2 new chromosomes by selecting two parents using roulette selection and 

continuous variable average crossover with crossover parameter 𝑎 = 0.8. 

4. Generate 𝑁/6 new chromosomes by selecting one individual from roulette selection and 

Gaussian mutation with parameters 𝑝m = 1/𝐿� and 𝜎. = 1.0. 

Figure 2-7: Binary string mutation selects the 3rd bit in the 
genotype for mutation. 
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5. Generate 𝑁/6 new chromosomes by selecting two parents from two, 6-way tournaments 

and continuous variable average crossover with crossover parameter 𝑎 = 0.8. 

6. Generate 𝑁/6 new chromosomes by selecting one individual from a single, 6-way 

tournament selection and Gaussian mutation with parameters 𝑝m = 1/𝐿� and 𝜎. = 1.0. 

7. Score population on the objective function. 

8. If 𝐺 generations have been completed, terminate the program. Else, return to step 3. 

 

The size of the chromosome genotype and the objective function is application dependent and are 

input by the user at runtime.  The continuous variable average crossover is chosen to encourage 

exploration of the parameter space between high-performing solutions. Mutation parameter 𝑝m is 

chosen as 1/𝐿� to discourage mutations from occurring in multiple dimensions at once.   
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2.9 Genetic Algorithm Verification 

The genetic algorithm is tested on multiple objective functions with known solutions to 

verify performance.  

2.9.1 Two-Dimensional Test Case 

Consider the problem of finding the ordered pair (𝑥∗, 𝑦∗) that maximizes the function 

 𝑓(𝑥, 𝑦) = 19.81 − 𝑥 sin(4𝑥) − 1.1𝑦 sin(2𝑦) (2-12) 

subject to the constraints 𝑥, 𝑦 ∈ [0,10]. The function has a global maximum 

 𝑓(𝑥∗ = 9.03899, 	𝑦∗ = 8.66819) = 38.3645 (2-13) 

and many local maxima and minima. The genetic algorithm is tested on this objective function, 

with fitness assigned by evaluating the objective function. Any solution created that does not fall 

within the interval 𝑥, 𝑦 ∈ 	 [0, 10] is assigned a fitness of 0.  The genotype length is 𝐿� = 	2, with 

𝑥 → 	𝑥$	and 𝑦 → 	𝑥.. The algorithm operates on 𝑁 = 80 individuals with termination criterion of 

𝐺 = 30 generations. Figure 2-8 shows the objective function surface and optimization summary. 

The blue line in the optimization summary shows the maximum fitness in the population at each 

generation. The green line shows the population’s average fitness at each generation.  

 

Figure 2-8: Objective function surface (left) and optimization summary (right). 
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The maximum fitness stops increasing, indicating convergence. The genetic algorithm finds 

𝑥⃑∗		 = 	[9.03899, 			8.66806]z after 30 generations. This solution has a fitness of 38.3653 and a 

distance 𝑑 = 0.00759 from the known global maximum. Convergence could be improved by 

allowing the genetic algorithm to optimize for a larger generation count.  

 
2.9.2 Omnidirectional Radiation Pattern Test Case 

The genetic algorithm is tested on radiation pattern optimization. An azimuthally 

symmetric radiation pattern 𝐺(𝜃)	can be expressed as a weighted sum of spherical harmonics 

𝐺(𝜃) = 𝑎�𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) + ⋯	𝑎>𝑌>�(𝜃)	, 𝜃 ∈ [0, 𝜋] (2-14) 

and is subject to conservation of energy and non-negative constraints. Spherical harmonics are 

chosen to model antenna gain because they enforce conservation of energy by fixing 𝑎� = 2√𝜋. 

Enforcing constraints and using the first 13 harmonics simplifies the model to 

𝐺(𝜃, 𝑎⃑) ≅ 2√𝜋	𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) + ⋯	𝑎$.𝑌$.� (𝜃)	, 𝜃 ∈ [0,𝜋] (2-15) 

𝑎⃑ = [𝑎$, 𝑎., … , 𝑎$.]Q (2-16) 

An in-depth discussion of spherical harmonics as models for radiation patterns and necessary 

constraints is found in Appendix A.  

An expansion vector 𝑎⃑ can be chosen to model low-gain, azimuthally symmetric radiation 

patterns. To maintain consistent vocabulary, let 𝑎⃑ → 𝑥⃑, where the 𝑥⃑ is a continuous variable 

genotype in a genetic algorithm. The function  

is maximized by a radiation pattern 𝐺(𝜃, 𝑥⃑) = 𝐶, or a radiation pattern with no directivity. Thus, 

a vector 𝑥⃑∗	exists that maximizes 𝑓[𝐺(𝜃, 𝑥⃑)] such that the radiation pattern 𝐺(𝜃, 𝑥⃑∗) is 

𝑓[𝐺(𝜃, 𝑥⃑)] = 	
1

𝜋max[𝐺(𝜃, 𝑥⃑)]
£ 𝐺(𝜃, 𝑥⃑)𝑑𝜃
¤

�
 (2-17) 
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omnidirectional. 𝑓[𝐺(𝜃, 𝑥⃑)] is bounded on the range [0, 1] and the optimal solution is known to be 

𝑥⃑∗ = 0. Furthermore, the optimal solution that satisfies conservation of energy constraints is 

𝐺(𝜃, 𝑥⃑)	 = 	1.0. 

The genetic algorithm is configured with genotype length 𝐿� = 12. The first generation is 

sampled from a uniform distribution with 𝑥⃑ ∈ [0, 10]. Furthermore, to enforce conservation of 

energy on radiation patterns, a constraints function is added to the algorithm that corrects solution 

vectors 

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛(𝑥⃑) = 	

⎩
⎪
⎨

⎪
⎧ 𝑥⃑
1 − min[𝐺(𝜃, 𝑥⃑)] 									𝐺

(𝜃, 𝑥⃑) < 0
	

𝑥⃑																																							𝐺(𝜃, 𝑥⃑) ≥ 0

 (2-18) 

 

The new algorithm, GA2, is a modification of GA1 that supports radiation pattern constraints. 

GA2 uses the following steps: 

1. Generate a population of 𝑁 random chromosomes. 

2. Score population on the objective function. 

3. Generate 𝑁/2 new chromosomes by selecting two parents from roulette selection and 

continuous variable average crossover with crossover parameter 𝑎 = 0. 8. 

4. Generate 𝑁/6 new chromosomes by selecting one individual from roulette selection and 

Gaussian mutation with parameters 𝑝m = 1/𝐿� and 𝜎. = 1.0. 

5. Generate 𝑁/6 new chromosomes by selecting two parents from two, 6-way tournaments 

and continuous variable average crossover with crossover parameter 𝑎 = 0. 8. 

6. Generate 𝑁/6 new chromosomes by selecting one individual from a single, 6-way 

tournament selection and Gaussian mutation with parameters 𝑝m = 1/𝐿� and 𝜎. = 1.0. 

7. Constrain each new chromosome according to equation 2-18. 
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8. Score population on the objective function. 

9. If stopping criteria is reached, terminate the program. Else, return to step 3. 

The genetic algorithm, GA2, will find 𝑥⃑ that maximizes 𝑓[𝐺(𝜃, 𝑥⃑)]. In this problem, the genetic 

algorithm phenotype is a radiation pattern 𝐺(𝜃, 𝑥⃑) and the genotype is 𝑥⃑. Figure 2-9 shows a 

summary of the genetic algorithm optimization and the radiation pattern of the most fit individual 

of the final generation. The genetic algorithm finds 𝑥⃑∗ shown in Table 2-1 after 100 generations. 

This solution has a fitness of 0.99 and gain averaged over all polar angles of 0 dBi. 

 

Table 2-1: Genotype of fittest solution in omnidirectional test case 

 
𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-0.0036 -0.016 -0.0093 -0.0034 -0.0052 0.0047 -0.0043 -0.0034 0.0022 -0.0095 -0.0013 -0.0027 

 

The decibel magnitude plot of the solution resembles an isotropic radiator, which is the expected 

solution for an omnidirectional radiation pattern that obeys conservation of energy.  

Figure 2-9: Optimization summary (left) and radiation pattern of the fittest individual (right) for omnidirectional test case.. 
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2.9.3 Directional Radiation Pattern Test Case 

The genetic algorithm is tested on its ability to find directional radiation patterns. The 

phenotype 𝐺(𝜃, 𝑥⃑) and genotype 𝑥⃑ used in section 2.9.2 is used again. The new fitness function is 

where the range of 𝑓[𝐺(𝜃, 𝑥⃑)] falls within [0, 1] for non-negative 𝐺(𝜃, 𝑥⃑). An optimal radiation 

pattern is a rectangular function Π[ $
­�t­�

(𝜃 − ­�®­�
.
)] with a fitness of 1.0. This solution is 

unattainable due to the use of a finite number of spherical harmonics in the radiation pattern model.  

The genetic algorithm attempts to find 𝑥⃑ that maximizes 𝑓[𝐺(𝜃, 𝑥⃑)] with 𝜃$	 = 	85∘ and 

𝜃.	 = 	95∘	. Figure 2-10 shows a summary of the genetic algorithm optimization and the radiation 

pattern of the most fit individual of the final generation. The first generation is randomly 

distributed on 𝑥⃑	 ∈ 	[−5, 5]. The genetic algorithm finds 𝑥⃑∗ shown in Table 2-2 after 

𝑓[𝐺(𝜃, 𝑥⃑)] = 	
∫ 𝐺(𝜃, 𝑥⃑)𝑑𝜃­�
­�

∫ 𝐺(𝜃, 𝑥⃑)𝑑𝜃¤
�

, 0 < 𝜃$ < 𝜃. < 𝜋	 (2-19) 

Figure 2-10: Optimization summary (left) and radiation pattern of the fittest individual (right) for directional test case. 
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1000 generations. This solution has a fitness of 0.120. The associated radiation pattern has 

maximum gain of 6.23 dBi at 90∘ with half-power beam width of 20∘. 

Table 2-2: Genotype of fittest solution in directional test case 

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-0.0032 -2.76 -0.0365 1.91 -0.0316 -1.76 -0.0839 1.76 -0.0459 -1.37 -0.0522 0.53 

 

Fitness could be further improved by using higher-order spherical harmonics. This would increase 

the dimensionality of the optimization problem, resulting in longer optimization times.  

2.9.4 Discussion of Genetic Algorithm Performance 

The genetic algorithm finds optimal solutions to the two-dimensional and omnidirectional 

test cases. Furthermore, it finds a sub-optimal solution to the directional test case. The sub-optimal 

solution is acceptable because it outperforms the initial generation of randomly selected solutions, 

indicating the final solution is better than randomly sampled solutions. The genetic algorithm’s 

ability to produce directional and omnidirectional solutions implies it can create a wide range of 

low-gain radiation patterns. Note spherical harmonics do not allow discontinuities, making the 

global maxima of the directional test case unobtainable.  

3 Simulation Tools  
3.1 AraSim  

The fitness score assignment in this optimization utilizes an in-ice Monte Carlo simulation 

software, AraSim. It simulates the ARA detector performance and was developed by 

the ARA collaboration. The software simulates high-energy neutrino (~1018 eV) interactions in the 

Antarctic ice sheet that produce electromagnetic (EM) showers resulting in radio frequency 

radiation. The radiation from in-ice EM showers are modeled by Askaryan radiation described 
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in Ref. [6]. The interactions are evenly distributed and confined to a 3 km-radius cylindrical 

volume centered around the detector [28]. Figure 3-1 illustrates this volume. 

 

 

Figure 3-1: Neutrino interactions are uniformly distributed within a cylindrical volume. 

 

The incoming neutrino travel direction randomly distributed over a 4π solid angle. Radio 

emission propagation is modeled using ray tracing methods that determine the path length from 

the interaction to the detector. The ray tracing method models the depth dependent index of 

refraction of Antarctic ice as a starting at 𝑛 = 1.3 at the ice surface and reaching 𝑛 = 1.8	at 200 m 

beneath the surface. The emitted EM waves bend through the ice from the interaction site to the 

antenna.  AraSim calculates the viewing angle, EM wave polarization at the antenna, travel time 

to the antenna, ice attenuation factor, and Fresnel refraction factor [28]. AraSim also models the 

system electronics, noise waveforms, and the time-domain trigger discussed in depth in Ref. [28].  

The detector antennas are gain values over the 83.33 MHz to 1083.53 MHz band, in a 

Numerical Electromagnetics Code (NEC) simulation file. The NEC files describe an antenna 

model’s gain and phase. Each file is simulated in AraSim at 60 frequencies with 16.67 MHz 
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frequency increments, starting at 83.33 MHz. AraSim calculates the detector’s fitness score, 

denoted as the effective volume. The effective volume quantifies the volume of ice monitored by 

the neutrino detector (described explicitly in section 3.2). This effective volume is appended to the 

NEC file to clearly associate its value with the radiation pattern. The effective volume is then used 

in the genetic algorithm as an associated fitness metric. 

3.2 Effective Volume 

The effective volume quantifies the volume of ice monitored by a neutrino detector. It 

accounts for trigger threshold, geometry, neutrino-nucleon interaction cross-section (or neutrino 

interaction probability), signal strength, and EM propagation in the ice. To first order, the volume 

monitored by an ARA station is a cylinder centered on a station, but the directional dependence of 

the interaction probability and arrival direction detection probability modify this volume. The 

effective area of a detector is defined as,  

  
𝐴?°°(𝐸) =

𝑉²?>(𝐸)
𝑁²?>(𝐸)

1
𝐿T>~(𝐸)

� 𝑤T
T,~´T²

 
(3-1)  

where 𝑉²?>(𝐸) is AraSim’s neutrino interaction scan volume, 𝑁²?>(𝐸) is the number of neutrino 

interactions, 𝐿T>~(𝐸) is the neutrino interaction length within the ice, and 𝑤T is the weight 

(probability) of a neutrino interaction at a given detection trigger threshold summed over all 

possible neutrino interactions, 𝑖 [1]. 𝐿T>~(𝐸) is defined as, 

𝐿T>~(𝐸) =
𝑚>µ<¶?=>

𝜌T𝜎
 (3-2)  

where 𝑚>µ<¶?=> is the nucleon mass, 𝜌T is the Earth layer 𝑖 mass density, and 𝜎 is the neutrino-

nucleon cross-section [7]. 𝐿T>~(𝐸) is calculated at the user-defined neutrino interaction energy. 

The trigger threshold defines the required EM wave voltage to trigger the detector. Weight 

is defined on as 
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𝑤T(𝐸) = 	¸ 𝑒
t¶¹

º»q¼,¹(½)	
\

 
(3-3)  

where 𝑙\ is the path length through material 𝑗. Weight is limited to [0, 1] and is directly proportional 

to interaction probability over the path the neutrino takes through the Earth. The expected mean 

weight of all simulated interactions is 0.50. A neutrino and its associated weight is only included 

in the summation if it triggers the detector in the simulation. This definition is valid if the effective 

volume is defined as, 

𝑉?°°(𝐸) = 	
𝑉²?>(𝐸)
𝑁²?>(𝐸)

� 𝑤T
T,~´T²

. 
(3-4) 

Detector effective volume is the chosen fitness function because it defines the sensitivity 

of a given neutrino experiment. Effective volume is not calculated as a function of the number of 

neutrino interactions. However, increased interactions enhance effective volume precision and 

decreases uncertainty. Figure 3-2 shows increasing number of simulated neutrinos corresponds to 

decreasing error bars.   

AraSim reads the NEC file gain values line-by-line until the end of the file. Files varying 

from NEC file specific formatting cause file input errors. Therefore, it is necessary to modify the 

AraSim file input code to only read the NEC file gain values and not the appended fitness score. 

Figure 3-2 demonstrates that modified AraSim and original AraSim assign similar effective 

volumes using the standard ARA Vpol and Hpol antenna radiation patterns, as expected. Changing 

the method for reading files should not affect the calculated effective volume.  
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Figure 3-2: Effective volume and error bars vs. number of detected neutrinos, using Vpol bicone and Hpol quad-slot 

antennas. 

  
 
3.3 Directional Beam Pattern Testing  

 ARA’s vertically and horizontally polarized antennas (Vpol and Hpol, respectively) are 

tested in AraSim to determine the most likely neutrino arrival directions. Only directional beam 

radiation patterns are used for one polarization at a time. The angular test range is 0o to 180o with 

respect to the vertical in 30o increments, where 0o corresponds to a neutrino path direction 

originating from the ice surface, directly above the antenna.  These 7 unique beam patterns are 

executed in AraSim. The same beam pattern is used at all 60 frequencies. This test benchmarks 

which angles of 𝜃 correspond to the largest number of neutrino interactions. Each pattern is 

symmetric about the z-axis (azimuthally symmetric) and has approximately 9 dBi of gain in the 

specified direction: 0o, 30o, 60o, … , 180o. Each directional pattern has an approximate first null 

beam width (FNBW) of 30o. Figure 3-3 shows two sample beam patterns used in this test focused 

at 30o and 120o. Figures 3-4 and 3-5 indicate antennas with main beam lobes between 60o and 120o 
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yield higher effective volumes. This indicates an optimized radiation pattern’s main beam is 

directed between 60o and 120o.  

 

Figure 3-3: Sample directional beam patterns with main beam centered about 30° (left) and 120° (right) with respect 
to vertical and approximate first null beam width (FNBW) = 30o. 

 

 

Figure 3-4: Effective volume of Vpol directional beam patterns with respect to vertical. Hpol radiation pattern gain 
is set to zero at all angles. Patterns incremented in 30o steps, approximate FNBW = 30o. 
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Figure 3-5: Effective volume of Hpol directional beam patterns with respect to vertical. Vpol radiation pattern gain 
is set to zero at all angles. Patterns incremented in 30o steps, approximate FNBW = 30o. 

 

3.4 Simplified AraSim  

AraSim requires approximately 30-45 minutes per radiation pattern. This extrapolates to 

multi-day full program simulations when executing multiple genetic algorithm generations. To 

reduce simulation time, a simplified version of AraSim is created, AraSimLite. The neutrino 

energy used in AraSimLite is 10$% eV. The redesigned simulation tool, created in collaboration 

with Ohio State University (OSU), simplifies the fitness assignment by omitting the simulation’s 

ray-tracing, noise waveforms, signal polarization, and ice modeling. AraSimLite is created by 

simulating the neutrino-nucleon interaction cross-sections and samples possible neutrino 

interaction points within the ice [29]. It then randomly distributes neutrino directions over 4𝜋sr 

and produces corresponding weights and neutrino path directions.  

AraSim requires approximately 30 minutes to simulate 10,000 neutrino interactions and 

calculate fitness, while AraSimLite requires approximately 0.3 seconds. Therefore, AraSimLite 

evaluates radiation pattern fitness approximately 6000 times faster than AraSim. Executing the 
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program loop with AraSimLite in place of AraSim serves as an intermediate test of GA 

performance with a neutrino-based fitness function. A full GA test is the program loop executed 

with AraSim as the neutrino interaction simulator. AraSimLite results identify potentially optimal 

detector radiation patterns that serve as initial radiation patterns for GA-interfaced AraSim. Two 

versions of AraSimLite are constructed for testing: AraSimLite and AraSimLite2.  

 

3.5 AraSimLite  

A block diagram of AraSimLite is shown below in Figure 3-6.  

 
Figure 3-6: AraSimLite Block Diagram condensed (top) and expanded (bottom). 

 
 The Neutrino Event Simulation block in Figure 3-6 generates the neutrino event ‘location’ 

relative to the ARA detector location, and the ‘weight.’ ‘Location’ is the event’s three-dimensional 

position in rectangular coordinates. ‘Weight’ is the probability that the neutrino event occurs. This 

is the probability of neutrino-ice interaction vs. Earth absorption. The Monte Carlo simulation 

evaluates a user-defined number of events and returns an array of weights and locations. 

AraSimLite uses the data array to calculate a fitness score for each antenna radiation 

pattern. The Neutrino Event Evaluation converts the location to polar coordinates, 𝑅T and 𝜃T, 
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shown in equations 3-5 and 3-6, respectively. Antenna gain 𝑔(𝜃T) is computed from the radiation 

pattern at angle 𝜃T. Fitness score is calculated as 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑠𝑐𝑜𝑟𝑒 =�¿𝜔T, 	𝑖𝑓	
𝑔(𝜃T)
𝑅T.

> 𝑟~�

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

T�$

 
(3-5) 

where 𝑅T, denoted as R in Figure 3-7, is 

𝑅T = Â𝑥. + 𝑦. + 𝑧.		 (3-6) 

and 𝜃T, denoted as 𝜃 in Figure 3-7, is 

	𝜃T = cost$ Ã
𝑧 + 200𝑚

𝑅 Ä (3-7) 

𝑧 is the vertical location of the interaction (𝑧 < 0 below the ice surface), 𝑁 is the number of 

neutrino events, and 𝑤T is weight. The minimum detectable signal for ARA electronics is the 

threshold value 𝑟~� in units of $
m� representing $

Å�
 EM wave power loss. Figure 3-7 shows the 

AraSimLite geometry. Note z is positive above the ice; therefore, the z location of neutrino events 

occurring within the ice are negative. 

 

 

Figure 3-7: AraSimLite geometry.  
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Equation 3-5 is characterized by varying the threshold value, 𝑟~�. Figure 3-7 shows the 

threshold. In simulation, 𝑟~�  is adjusted to increase fitness score sensitivity to radiation patterns. 

Using an isotropic radiation pattern in AraSimLite, the threshold value 𝑟~� is swept to determine 

its effect on fitness score. A threshold value that is too low allows many radiation patterns to 

achieve high fitness score. However, if the threshold value is too high, then minimal neutrino 

events will be detected. Therefore, it is necessary to choose a threshold value that does not saturate 

the population with high fitness radiation patterns, but still allows for sufficient event triggering. 

The threshold value corresponding to 50% of the maximum fitness score for an isotropic radiator 

in Figure 3-8 is 𝑟~�	 = 	150 $
m�.	 

 
Figure 3-8: AraSimLite Fitness score vs. 𝑟~� threshold, isotropic radiator. Red dotted line intersection corresponds 
to 50% fitness point. 

 
Decreased computation time sacrifices neutrino simulation accuracy. Table 3-1 

shows AraSimLite and AraSimLite2 computations compared to AraSim.  
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Table 3-1: Computation Comparison: AraSim, AraSimLite, AraSimLite2. Red boxes indicate included computations. 

Computation AraSim AraSimLite AraSimLite2 

Models earth absorption  
 

 

Accounts for signal spreading 
loss 

 
 

 

Evaluates single frequency    

Accounts for neutrino travel 
direction and Cherenkov Cone 

   

Models ice characteristics    

Accounts for noise    

Accounts for signal polarization    

Evaluates full frequency range: 
𝑓 = 	83.3	𝑀𝐻𝑧	-	1083.5	𝑀𝐻𝑧 

   

 

 Note that the radiation path bending due to varying index of refraction in ice as a function 

of depth is not accounted for in AraSimLite and AraSimLite2. AraSim has computationally 

intensive ice models that calculate through-ice radiation propagation. Omission of ray-tracing and 

noise generation are the greatest contributors to increased computational speed in AraSimLite and 

AraSimLite2.  
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3.6 AraSimLite2  

 An updated AraSimLite version (AraSimLite2) accounts for neutrino trajectory and the 

Cherenkov cone. Table 3-1 above shows the included computations of AraSimLite and 

AraSimLite2 compared to AraSim. 

The fitness function described in equation 3-5 is updated to account for the Cherenkov 

cone. 𝜃ÉT?Ê  is defined as the angle between the velocity vector 𝑣 and the vector from the neutrino 

event to the detector, 𝑅Ì⃗ . If 𝜃ÉT?Ê  is within the Cherenkov cone angle, 𝜃<=>?, and the received power 

density is greater than 𝑟~�, the event weight is added to the fitness score. The revised fitness score 

is 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠	𝑠𝑐𝑜𝑟𝑒 =�¿𝜔T, 	𝑖𝑓	
𝑔(𝜃T)
𝑅T.

> 𝑟~�	𝑎𝑛𝑑	55.3= < 𝜃ÉT?Ê < 56.3=

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

T�$

 (3-8) 

where 𝜃ÉT?Ê	𝑖𝑠 

𝜃ÉT?Ê = cost$ Í
𝒗ÌÌ⃗ ∙ 𝑹ÌÌ⃗

|𝒗ÌÌ⃗ | ∙ |𝑹ÌÌÌÌ⃗ |
Ò (3-9) 

Glacial ice’s index of refraction is approximately 1.76  [30]. Therefore, using equation 1-1, the 

Cherenkov cone angle in glacial ice is 56.8= relative to the neutrino’s velocity vector 𝑣	. The cone 

has a width of approximately	1=. That is 

55.3= < 𝜃<=>? < 56.3= (3-10) 
 

Figure 3-9 illustrates an event within the viewing angle. X, Y, and Z represent the 

location of the neutrino event in the ice. Events that meet the viewing angle criteria are counted 

in the fitness score. 
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Figure 3-9: Neutrino interaction with θview meeting viewing angle criteria described in equation 3-8. 

 

The trigger threshold, 𝑟~�, is re-characterized to account for changes to the neutrino 

simulation model. Figure 3-10 below shows the fitness score, equation 3-8, as a function of 𝑟~� for 

an isotropic radiator. Table 3-2 shows critical threshold values and corresponding fitness scores. 
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Figure 3-10: AraSimLite2 Fitness score vs. threshold, isotropic radiator. Red dotted line intersection corresponds to 
50% fitness point. 

 
Table 3-2: Critical threshold values for AraSimLite2 

Percent of 
Maximum Fitness rth [1/m2] 

75% 167 1.2 × 10t« 

50% 112 1.4 × 10t« 

25% 56 2.2 × 10t« 

 

AraSimLite2 is characterized further to determine the distribution of events that pass the 

𝜃ÉT?Ê  criteria as a function of 𝜃. AraSimLite2 processes antenna radiation patterns using a 

pre-produced set of events. AraSimLite2 processes antenna radiation patterns from neutrino-ice 

interaction events computed by full AraSim. N = 100,000 events is selected to ensure the 
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simulation accounts for a sufficient number of neutrino paths. A histogram of events that pass 

𝜃ÉT?Ê  criteria vs. 𝜃 is shown in Figure 3-11. 𝜃 is the angle between the z-axis and event location, 

depicted as 𝜃T in Figure 3-9. Only 693 events (0.693%) pass the viewing angle criteria, and they 

cluster around 90= < 𝜃 < 160=. Hence, an optimal radiation pattern’s main beam is in this 𝜃 

range. Figure 3-12 is the Figure 3-11 histogram scaled by weight. The total weight in each angular 

bin is plotted on the y-axis.  

 

Figure 3-11: AraSimLite2 Passed Events Distribution, Viewing Angle within Cherenkov cone. 
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Figure 3-12: AraSimLite2 Passed Event Distribution, scaled by weight. 
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4 Radiation Pattern Optimization with Neutrino Simulations 
 
This section introduces AraSimLite and AraSimLite2 optimization results. The genetic 

algorithm finds several unique solutions with similar fitness, leading to multiple optimization 

results. Analyzing a single result is insufficient. The shared features between multiple optimization 

results inform which radiation pattern characteristics lead to high fitness. Sections 4.1 and 4.2 

show each result’s radiation pattern, spherical harmonic coefficients, and optimization summary. 

Section 4.3 analyzes radiation patterns and compares each to the bicone antenna currently 

implemented in the ARA detector.  

4.1 Optimization Results Using AraSimLite 

GA2 optimizes radiation patterns through 𝐺(𝜃, 𝑥⃑) and genotype 𝑥⃑ described in 

section 2.9.2. Each optimization trial's population size is N=60. The fitness function is 

and is derived in section 3.5. A selection of three candidate solutions are included.  

4.1.1 Candidate Solution 1 

𝑓[𝐺(𝜃, 𝑥⃑)] = �¿𝜔T, 	𝑖𝑓	
𝑔(𝜃T)
𝑅T.

> 𝑟~�

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

T�$

	 (4-1) 

Figure 4-1: Optimization summary (left) and radiation pattern (right) of C1. 
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Figure 4-1 shows the optimization summary and radiation pattern of candidate solution 

one (C1). C1 is the fittest individual in the population after 500 generations. The solution vector 𝑥⃑ 

of C1 is included in Table 4-1. The C1 radiation pattern has maximum gain of 3.81 dBi at 105∘ 

and a fitness of 26186.0.  

Table 4-1: Spherical harmonic coefficients of candidate solution 1 

 
 
4.1.2 Candidate Solution 2 

Figure 4-2 shows the optimization summary and radiation pattern of candidate solution 

two (C2). C2 is the fittest individual in the population after 200 generations. The solution vector 𝑥⃑ 

of C2 is included in Table 4-2. The C2 radiation pattern has maximum gain of 5.13 dBi at 135∘ 

and a fitness of 25731.5.	

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-2.275 -0.751 1.491 0.502 -0.825 0.045 0.543 0.105 -0.207 -0.038 0.199 -0.091 

Figure 4-2: Optimization summary (left) and radiation pattern (right) of C2. 
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Table 4-2: Genotype of candidate solution 2 

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-2.097 -0.124 0.989 -0.002 0.780 -0.977 0.369 1.573 -0.963 -0.247 0.807 -0.228 

 

4.1.3 Candidate Solution 3 

Figure 4-3 shows the optimization summary and radiation pattern of candidate solution 

three (C3). C3 is the fittest individual in the population after 500 generations. The solution vector 

𝑥⃑ of C3 is included in Table 4-3. The C3 radiation pattern has maximum gain of 5.42 dBi at 133∘ 

and a fitness of 27119.9.  

 

Table 4-3: Genotype of candidate solution 3 

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-2.291 -0.287 1.265 -0.210 0.019 -0.497 -0.265 1.556 -1.141 -0.087 1.077 -0.487 

Figure 4-3: Optimization summary (left) and radiation pattern (right) of C3. 
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4.2 Optimization Results Using AraSimLite2 

GA2 optimizes radiation patterns in AraSimLite2. The phenotype 𝐺(𝜃, 𝑥⃑) and genotype 𝑥⃑ 

described in section 2.9.2. Each optimization trial size is N=60. The fitness function is, 

and is derived in section 3.6. The genetic algorithm finds several solutions over different 

optimization trials. A selection of three candidate solutions are included.  

4.2.1 Candidate Solution 4 

Figure 4-4 shows the optimization summary and radiation pattern of candidate solution 

four (C4). C4 is the fittest individual in the population after 500 generations. The solution vector 

𝑥⃑ of C4 is included in  

Table 4-4. The C4 radiation pattern has maximum gain of 3.98 dBi at 117.3∘ and a fitness 

of 146.4. 

𝑓[𝐺(𝜃, 𝑥⃑)] =�¿𝜔T, 	𝑖𝑓	
𝑔(𝜃T)
𝑅T.

> 𝑟~�	𝑎𝑛𝑑	55.3= < 𝜃ÉT?Ê < 56.3=

0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

�

T�$

	 (4-2) 

Figure 4-4: Optimization summary (left) and radiation pattern (right) of C4. 
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Table 4-4: Genotype of candidate solution 4 

 

 
 
 
4.2.2 Candidate Solution 5 

 

Figure 4-5 shows the optimization summary and radiation pattern of candidate solution 

five (C5). C5 is the fittest individual in the population after 500 generations. The solution vector 

𝑥⃑ of C5 is included in Table 4-5. The C5 radiation pattern has maximum gain of 3.12 dBi at 101∘ 

and a fitness of 143.2. 

Table 4-5: Genotype of candidate solution 5 

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-1.472 -1.093 1.708 0.427 -0.441 0.162 -0.125 0.706 -0.261 0.019 0.125 -0.031 

 
  

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-1.580 -1.261 1.646 0.237 -0.778 0.186 0.150 0.009 0.226 -0.253 -0.035 0.682  

Figure 4-5: Optimization summary (left) and radiation pattern (right) of C5. 
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4.2.3 Candidate Solution 6 

 

Figure 4-6 shows the optimization summary and radiation pattern of candidate solution 

six (C6). C6 is the fittest individual in the population after 500 generations. The solution vector 𝑥⃑ 

of C6 is included in Table 4-6. The C6 radiation pattern has maximum gain of 3.82 dBi at 116∘ 

and a fitness of 150.5.  

 

Table 4-6: Genotype of candidate solution 6 

𝑥$ 𝑥. 𝑥u 𝑥© 𝑥ª 𝑥7 𝑥« 𝑥% 𝑥4 𝑥$� 𝑥$$ 𝑥$. 

-1.211 -1.327 1.810 0.456 -1.043 0.308 0.108 0.111 0.071 -0.332 -0.030 0.476 

  

Figure 4-6: Optimization summary (left) and radiation pattern (right) of C6. 
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4.3 Optimization Results Summary and Comparison 

AraSimLite and AraSimLite2 optimization results yield radiation patterns with suppression 

in the 0∘ − 90∘ range and gain in the 90∘ − 180∘ range. C3 is the best candidate from the 

AraSimLite optimization and has a maximum gain of 5.42 dBi at 133∘. C6 is the best candidate 

from the AraSimLite2 optimization and has a maximum gain of 3.82 dBi at 116∘.  

 Each candidate solution from AraSimLite2 is downward directed, with main beam 

direction 90∘ < 	𝜃 < 	120∘. This common feature yields high fitness in AraSimLite2. Table 4-7 

shows main beam direction and half power beam width for all candidates. 

Table 4-7: Radiation Pattern Summary, Candidates C1-C6 

 Origin 

Main Beam Second Side Lobe 

Direction 
(degrees) 

Half power 
beam width 
(degrees) 

Gain 
(dBi) 

Direction 
(degrees) 

Half power 
beam width 
(degrees) 

Gain 
(dBi) 

C1 AraSimLite 104.9 56.0 3.81 N/A N/A N/A 

C2 AraSimLite 134.4 10.8 5.13 95.9 20.6 3.58 

C3 AraSimLite 133.0 10.3 5.42 97.8 20.3 3.64 

C4 AraSimLite2 117.3 45.4 3.98 N/A N/A N/A 

C5 AraSimLite2 101.1 58.2 3.12 180 27.0 2.51 

C6 AraSimLite2 116.8 45.2 3.82 180 23.8 1.09 

 

Table 4-8: Fitness Evaluation and Comparison 

 AraSim Fitness 
[km3sr] AraSimLite2 Fitness 

Bicone 6.23 ± 0.45 91.0 

Candidate 6 4.98 ± 0.45 150.5 
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Table 4-8 compares the best performing candidates to the in-ice bicone antenna. Because 

AraSimLite and AraSimLite2 are not frequency dependent, the bicone antenna beam pattern at the 

center of its operating range (400 MHz) is used.  

Table 4-8 shows discrepancies between AraSimLite2 and AraSim results. AraSim evaluates 

the bicone to be 20.1% better than Candidate 6. However, AraSimLite2 evaluates Candidate 6 to 

have 39.7% better fitness than the bicone. This suggests that AraSimLite2 does not adequately 

represent AraSim well enough to be optimize an antenna that out performs the bicone. Future work 

(section 5.2) should implement the GA with AraSim to best optimize an antenna for ARA neutrino 

detection. 

5 Conclusions 
5.1 Antenna Recommendations  

The ARA application calls for wideband antennas operating in the 150-850 MHz frequency 

range [1]. A discone antenna is low-gain with 10:1 bandwidth [31]; well-suited for the ARA 

application. An XFdtd ARA frequency band discone model is shown in Figure 5-1 The discone 

has dipole radiation characteristics at 250-500 MHz and increases directivity from 0 dBi to 5 dBi 

in the 90∘	-	180∘ range as frequency increases to 1000 MHz, see Figure 5-2. The standing-wave 

ratio is less than 2.0 across the 220-1000 MHz band, see Figure 5-3. 



 60 

 

 

Figure 5-1: Discone model constructed in XFdtd. 

 

 

Figure 5-2: XFdtd Discone Gain, 250-1000 MHz 
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Figure 5-3: XFdtd Discone Standing Wave Ratio vs. Frequency 

 
The discone antenna meets ARA project frequency requirements and the radiation pattern is 

directed between 90o and 180o for frequencies greater than 500 MHz. The discone diameter is 

40 cm, which exceeds ARA’s 10 cm diameter borehole.   

5.2 Future Work 

5.2.1 AraSim Integration 

Excessive simulation times (30 minutes per radiation pattern) prevented AraSim objective 

function optimization. Genetic algorithm and AraSim implementation on a high-performance 

computing cluster allows parallelization. AraSim objective function optimization yields candidate 

solutions with all ARA parameters (Table 3-1). 

5.3 Concluding Remarks 

A genetic algorithm that optimizes radiation patterns was developed. It is interfaced with 

neutrino simulation tools AraSimLite and AraSimLite2 to produce candidate radiation patterns for 

neutrino detection. The candidate solutions focus radiation in the 90∘	 < 	𝜃	 < 	180∘ range, 
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suggesting that downward directed antennas should be used in the ARA experiment. ARA 

antennas must be broadband; hence, a discone antenna is recommended. However, further analysis 

is required to develop a discone antenna that meets ARA frequency band and size constraints.  
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Appendix A: Spherical Harmonic Representations of Antenna Power 
Patterns 

 

An antenna power pattern 𝐺(𝜃, 𝜙) is modelled as the weighted sum of spherical harmonics. 

𝑌¶m(𝜃, 𝜙) is the 𝑙, 𝑚-order complex spherical harmonic. Under the condition that 𝑚	 = 	0, 

spherical harmonics 𝑌¶�(𝜃, 𝜙) are real and 𝜙-independent, or azimuthally symmetric. An 

azimuthally symmetric power pattern can be written 

 𝐺(𝜃) = 𝑎�𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) + ⋯	𝑎>𝑌>�(𝜃)	, 𝜃 ∈ [0, 𝜋] (A-1) 

where 𝑎⃑ = [𝑎�, 𝑎$,… , 𝑎>]Q is the expansion vector and each element of 𝑎⃑ is an expansion 

coefficient. Antenna power patterns are subject to conservation of energy, placing constraints on 

expansion coefficients. An energy conserving power pattern should have non-negative gain and 

obey the relation 

 ΔΩ =
4𝜋
𝐷mn�

 (A-2) 

 

where ΔΩ is the beam solid angle and 𝐷mn� is maximum directivity of the power pattern 𝐺(𝜃) [31]. 

The beam solid angle of a power pattern is defined  

 ΔΩ = 	£𝑔(𝜃,𝜙)
	

Ö

𝑑Ω = 	
1

max	[𝐺(𝜃, 𝜙)]
£𝐺(𝜃, 𝜙)
	

Ö

𝑑Ω (A-3) 

 

and the maximum directivity is defined  

 𝐷mn� = 	
max	[𝐺(𝜃,𝜙)]

𝜖´
, 0 ≤ 𝜖´ ≤ 1 (A-4) 

where 𝜖´ is the radiation efficiency of the antenna.  
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For an azimuthally symmetric radiation pattern represented by spherical harmonics 

	ΔΩ = 	
1

max	[𝐺(𝜃)]
£𝐺(𝜃)
	

Ö

𝑑Ω = 	
1

ϵÚ𝐷mn�
£[𝑎�𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) +⋯	𝑎>𝑌>�(𝜃)
	

Ö

]𝑑Ω  

=
1

ϵÚ𝐷mn�
Û£𝑎�𝑌��(𝜃)

	

Ö

𝑑Ω +	£𝑎$𝑌$�(𝜃)
	

Ö

𝑑Ω + ⋯+ £𝑎>𝑌>�(𝜃)
	

Ö

𝑑ΩÜ  

			=
1

ϵÚ𝐷mn�
Û𝑎� £𝑌��(𝜃)

	

Ö

𝑑Ω +	𝑎$ £ 𝑌$�(𝜃)
	

Ö

𝑑Ω +⋯+ 𝑎> £𝑌>�(𝜃)
	

Ö

𝑑ΩÜ, (A-5) 

 

and letting, 

Equations A-5 and A-6 lead to 

 ΔΩ = 	
1

ϵÚ𝐷mn�
[𝑎�𝑠� + 𝑎$𝑠$ + ⋯+ 𝑎>𝑠>] =

1
ϵÚ𝐷mn�

𝑎⃑Q𝑠.ÌÌ⃑  (A-7) 

 

The vector 𝑠 is evaluated numerically as,  

𝑠 = Ý2√𝜋, 0,… , 0Þ
Q
 

leading to, 

 ΔΩ =	
1

ϵÚ𝐷mn�
𝑎⃑Q𝑠 =

𝑎�𝑠�
𝜖´𝐷mn�

 (A-8) 

Enforcing equation A-2 on equation A-8, 

ΔΩ =
𝑎�𝑠�
𝜖´𝐷mn�

=
4𝜋
𝐷mn�

 

 

 𝑠> = £𝑌>�(𝜃)
	

Ö

𝑑Ω, 𝑠 = [𝑠�, 𝑠$,… , 𝑠>]Q. (A-6) 
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and solving for 𝑎�, 

𝑎� =
4𝜋𝜖´
𝑠�

=
4𝜋𝜖´
2√𝜋

= 2√𝜋𝜖´ ≅ 2√𝜋 

Because 𝜖´ is bounded on [0, 1], realistic antenna power pattern must have 𝑎� < 2√𝜋 and 

non-negative gain. For a well-designed antenna, 𝜖´ ≅ 1, leading to the constraints  

𝐺(𝜃) = 𝑎�𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) + ⋯	𝑎>𝑌>�(𝜃) ≥ 0	, 𝜃 ∈ [0, 𝜋] 

and 

𝑎� = 2√𝜋 

If an 𝑎⃑ leads to a negative 𝐺(𝜃), a new vector 𝑎⃑′ is made to preserve the features of the original 

vector 𝑎⃑ while obeying the above constraints. Under the condition min[𝐺(𝜃)] < 0, an offset can 

be introduced to 𝐺(𝜃) by subtracting min[𝐺(𝜃)], scaled by 2√𝜋 from the 𝑎� element 

 𝑎�w = 𝑎� − 2√𝜋min[𝐺(𝜃)]. (A-9) 

This operation removes all negative values from the power pattern, but no longer obeys 

conservation of energy if 𝑎� > 2√𝜋. That is, the power radiated by an antenna with this pattern 

would be greater than the power input to the antenna. To preserve the characteristics and positivity 

of the power pattern, each coefficient should be scaled by a positive constant 𝐶 that restores 𝑎= 

to	2√𝜋. 

 𝑎�ww = 𝐶𝑎�w = 𝐶]𝑎� − 2√𝜋min[𝐺(𝜃)]^ = 2√𝜋	 (A-10) 

Solving for 𝐶, 

 𝐶 =	
2√𝜋

𝑎� − 2√𝜋	min	[𝐺(𝜃)]
, (A-11) 
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and if 𝑎� = 2√𝜋 

 𝐶 =	
1

1 − min	[𝐺(𝜃)]. (A-12) 

𝑎⃑′ is then, 

 𝑎⃑w =
1

1 −min[𝐺(𝜃)]
ß

𝑎� − 2√𝜋min[𝐺(𝜃)]
𝑎$
⋮
𝑎>

á =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑎�
𝑎$

1 −min	[𝐺(𝜃)]

⋮
𝑎>

1 −min	[𝐺(𝜃)]⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A-13) 

 

In the context of optimization, it is beneficial to reduce the dimensionality of the 

optimization problem, decreasing the size of the parameter space. Because the radiation efficiency 

𝜖´ ≅ 1, it is a valid assumption to set 𝑎� = 2√𝜋. Thus, a power pattern becomes  

 𝐺(𝜃) = 2√𝜋𝑌��(𝜃) +	𝑎$𝑌$�(𝜃) + ⋯	𝑎>𝑌>�(𝜃)	, 𝜃 ∈ [0, 𝜋] (A-14) 

 

and 𝑎⃑ = [𝑎$, 𝑎.,… , 𝑎>]Q. If 𝐴 results in 𝐺(𝜃) < 0 on 𝜃 ∈ [0, 𝜋], the following transformation will 

remove any negativity while preserving the characteristics of the power pattern 

 𝑎⃑w =
1

1 −min	[𝐺(𝜃)]
ß

𝑎$
𝑎.
⋮
𝑎>

á (A-15) 
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