VPol GA.py User quide

By Ryan Debolt

Sections:
1. Obtaining

a. Cloning repository

2.Arguments

Q

X TQ T 0o

NPop
Gen
S_no
C_no
I_no
M_rate
Simga
Elite_no
Roul_no
Rank_no

. Tour_no

3. Functions

ST AT ITQ P00 00O

(0]

DataRead
DataWrite(
Sort
Generate
SizeCheck
Select
Elite()
Rank
Roulette
Tournament
Initialize
Survival

. Crossover
. Mutation

Immigration

4.Main code
5.Running

page 3

page 4

page 6

page 8
page 9

Obtaining:

To obtain this code and any of the files you will need to run it, you will go to
https://github.com/osu-particle-astrophysics/GenetisGeneticAlgorithms and then
clone this repository onto your user space. From here copy VPol_Ga.py (as well as
any other needed files) and move them into the directory that you are using it in.
This ensures you will have a backup version in the repository if your modifications

go wrong as well as ensuring that you will not push a bugged version of the code to
the github.

https://github.com/osu-particle-astrophysics/GenetisGeneticAlgorithms

Arguments:

This version of the genetic algorithm contains a total of 11 arguments that need to
be passed in order to run a generation. Without passing these in or doing it
improperly will result in the GA not running properly or at all. These arugments are
as follows

1. NPop:

a. Otherwise called population, this parameter controls the humber of
individuals that the GA will create a run with. It is suggested you run
around 100 individuals in a generation or more if you are able as more
individuals will tend to lead to better results

2. Generation:

a. This argument simply reads in the current generation that you are in in
this loop. This allows the GA to know where it is and behave
accordingly. In particular, it knows how to behave when at the Oth or
Nth generation.

3. S_no:

a. This is the Survival number (Previously known as reproduction but
renamed for clarity). This controls how many individuals from the
previous generation will be allowed to survive unaltered into the next
generation.*

4. C_no:

a. This is the Crossover number. This argument controls how many
individuals will be created by sexual reproduction. It is important to
make sure this is an even number as well as every two parents will
produce two offspring. If you attempt to give an odd number, the GA
will not run.*

5.1 _no:

a. This is the Immigration number. This controls how many individuals
will be created in the population by random generation. This simulates
the immigration of individuals from other populations and serves to
introduce genetic diversity.*

6. M_rate:

a. This controls the mutation rate of individuals created by crossover. The
number you pass in here will be divided by 100 to create the rate that
is used.

7. Sigma:

a. Controls the gaussian width of the mutations. This will also be divided

by 100 when passed in.

8. Elite_no:
a. Determines how many individuals per generation will be selected by
Elite selection. Only do 1 individual at most, preferably 0. This is more
here for assurance purposes than to be used for runs.**
9. Roul_no:
a. Determines how many individuals per generation will be selected by
Roulette selection.**
10. Rank_no:
a. Determines how many individuals per generation will be selected by
Rank selection.**
11. Tour_no:
a. Determines how many individuals per generation will be selected by
Tournament selection.**

* Arguments of S_no, C_no, and I_no, must add to the population size to work

**Arguments of selection methods must add to the population size to work

Functions:

Functions are the foundation of this genetic algorithm. To keep things simple to
alter, I have written all repeated functions of the GA into easily read and managed
functions. Bellow, I show the name of each function and the variables that are
passed in. They are as follows:

1. DataRead(Fitness, I_Pop, Gen)

a. Ran every generation except for generation 0, this function finds the
generationDNA.csv and fithessScore.csv files to read in the previous
generation that our new generation will be built from.

2. DataWrite(NPop, F_Pop, freq_coeff, freqVector, S_no, C_no, selected, Gen,
seed)

a. Ran every generation. This function writes out the generationDNA.csv
file that will be used to determine the fitness scores of individuals. It
also writes out the parents.csv file that is used by us to track lineage
as well as the random number seed used by that generation.

3. Sort(Fitness, I_Pop, P_loc)

a. This function runs an insertion sort algorithm to put the individuals
read in from the previous generation in order based on their fitness
scores, this is used by Rank selection.

4. Generate(Sections, Parameters)

a. This function creates a single random individual within the bounds
specified by our geometry and then passes that individual to the
function that called it.

5. SizeCheck(R, L, A, B)

a. This function reads in the genes of one section of our design and then
checks to make sure that is does not violate any constraints we have
put on it. These include not exceeding the borehole size, not
self-intersecting, and not exceeding the bounds of our gene limits

6. Select(Opp_no, Fitness, Elite_no, Roul_no, Rank_no, Tour_no, Pool)

a. This function calculates how many individuals will need to be selected
by each selection method, calls each selection method based on this
result, and then returns a list of the locations of the selected
individuals to the function that called it.

7. Elite()
a. Returns the location of the highest ranked individual of a generation.
8. Rank(Fitness)

a. This selection method selects an individual through weighted selection
where the weight is determined by the rank of the individual. It then
returns the location of this individual.

9. Roulette(Fitness)

a. This selection method selects an individual through weighted selection
where the weight is determined by the proportional fithess of the
individual. It then returns the location of this individual.

10. Tournament(Pool, Fitness)

a. This selection method first gathers a small subset of the population
determined by the Pool variable and then selects the individual from
that group with the highest fitness score. It then returns the location
of this individual.

11. Initialize(F_Pop, Sections, Parameters)

a. This function calls Generate NPop times to create a completely random
generation that will serve as the initial generation for the loop.

12. Survival(S_no, I_Pop, F_Pop, Fitness, Elite_no, Roul_no, Rank_no,
Tour_no, Pool)

a. Takes selected individuals from the initial population and then places
them into the final population, simulating survival.

13. Crossover(S_no, C_no, I_Pop, F_Pop, Fitness, Elite_no, Roul_no, Rank_no,
Tour_no, Pool, M_rate, sigma)

a. From a list of selected individuals, this function pairs up two parents
whose genes are then swapped uniformly to create two children
individuals that are then sent to mutation before being added to the
final population.

14. Mutation(F_Pop, start, stop, M_rate, sigma)

a. Takes in individuals from crossover and then mutates the genes based

on the mutation rate and sigma passed in. No Mutation is guaranteed.
15. Immigration(S_no, C_no, I_no, F_Pop, Sections, Parameters)

a. Immigration calls generate to create I_no random individuals that will

then be added to the final population.

Main Code:

The main code calls the functions above to create the entire generation. It also
provides print statements between functions to confirm jobs were completed
properly. The order of this code is as follows

1. Read in the passed arguments
a. If the passed-in arguments are incorrect or one or more are missing,
the function will end itself and output an error statement.
2. Establish variables and arrays
a. Some variables are established without the need to read them in from
the call.
b. The function will take some integer augments and convert them to the
necessary format they are needed for in functions that use them.
c. Finally, any arrays that are needed are initialized
3. Check the generation
a. If the generation is the Oth, the code will call initialize to create the
generation and then use DataWrite to write this information to files
b. Otherwise, the code moves to step 4
4. Read in data
a. Calls DataRead to get the needed information
5. Call Survival
6. Call Crossover and Mutation
7. Call Immigration
8. Call Datawrite to write the new generation’s information to
files.
9. End

Running:

To run this program, you must first ensure that the following files are in the same
directory as the GA, or you have specified where to find them in the GA itself.

1. fithessScores.csv
a. This stores the fitness scores and uncertainties of those fithess scores
in a file.
2. generationDNA.csv
a. Stores the parameter values of each antenna in a file.
3. parents.csv
a. Stores information about genetic operators, the seed used to create
individuals, and the parents of each individual in a file.

Once you have these files in the specified directory run this command to run the GA
Python3 VPol_Ga.py NPop, Gen, S_no, C_no, I_no, M_rate, Sigma, Elite, Roul, Rank, Tour

Where each variable corresponds to the arguments specified earlier. An example of
a run call might look something like this:

python3 VPol_GA.py 100 1 6 70 24 20 5 0 20 60 20
The last thing is to ensure that you have a fitness function that occurs between

instances of the GA so that your fitness scores are updated between generations.
Good Luck.

