We are almost to where we can start the physical building of the antenna!
I've attached all the information I currently have regarding the building project. Some of it is messy work notes and some is well-structured.
I’ve attached the following files for the GENETIS building project:
- Building Dump.txt
- My working notes that I used while trying to simulate the antenna in XFdtd (very messy)
- Building Dump of Useful Materials.txt
- List of materials that I found regarding the building project like slides, elogs, etc.
- Simulating Building Model.txt
- A writeup I made describing my process for simulating the antenna in XFdtd
- Done with change materials.zip
- Solidworks model of antenna
I also made a slide deck that contains the directory locations + has graphs HERE. |
Building Dump:
Debugging Issues with Antenna model simulation:
Graphs to get (compared to Curved_Sides Antenna Run):
- Gain Plots
- Look at frequencies where dips. Could be due to: dielectric loss, mismatched impedance or structural changes
- Impedance Over Frequency Plots
- Want impedance to be around 50 Ohm for resistive components and 0 for reactance at operational frequencies
- S11 Plots (Return Loss VS Frequency)
- Look for where the S11 dips to determine where the antenna is resonant
- Total Efficiency Vs Frequencies
- Drops at certain frequencies indicates problems!
- VSWR vs Frequency
- Lower VSWR means better matching
in 03_13_2025_manual.xf:
Run1 = wrong material defs (deleted)
Run2 = glitched it
Run3 = wrong material def again slightly changed tho
Run4 = wrong material, with conductor gone
Run5 = wrong material, with full wire gone
Run6 = right material, full wire gone
Run7 = right material, conductor gone
Run8 = right material, everything there feed shifted to side
Run9 = right material, feed in middle of conductor
Run10 = right material, wire gone feed offset reduced (putting closer to center). this failed because the top of the feed was disconnected
Run11 = right material, feed with correct max feed offset allowed, coax gone
Run12 = trying the same thing but with the coax gone with building the feed
Run13 = with coax cable back, feed shifted closer to middle (apparently forgot to save and it's just the same thing.. as run12)
Run14 = adding pads and putting feed in the middle of the antenna, leave dielectric and jacket turned on
Run16 = pads, feed in middle, removing dielectric and jacket (-300 thing again.. not sure why)
Run17 = same thing but ABS material changed and adjusted pucks a little
Run18 = same ABS material change but with only inner conductor removed (I am testing why I am getting -300..)
Run19 = removed supports, still with pucks + only inner conductor removed
Run20 = removing pucks, with conductor removed and new ABS material (no more -300 but very low again...)
run21 = removed pucks, conductors(PLURAL) with new ABS Material
run23 = back to just supports, offset feed new ABS Material
run24 = coax gone, og ABS material, with the offset feed closer to the middle
run25 = everything back to normal coax gone (something wrong)
run26 = trying to fix the issue I'm seeing (FIXED) you have to uncheck that materials are included in meshing :/
run27 = actually removing the outer and inner conductors (yields worse gains!)
run28 = moving to feed center w/ copper plates and with the jacket + dielectric
Seems like the wire in the middle should be plastic (or non-conducting)? based off document wangjie sent me
"If we 3D print the metal, Chi-Chih thought that we could keep them together through a plasic rod running
through the middle" (It's not!)
maybe not, named LMR600 in solidworks which have the following material properties:
https://www.awcwire.com/lmr-cable/lmr-75-ohm-cable/lmr-600-75
screws connecting halves needed to be plastic
all other screws needed to be non-magnetic stainless steel
everything else is copper (?)
Trying to change materials of the wire and supports (03_13_2025_building_sim_2.xf): still bad
Trying again with same materials and putting feed down center of coax cable(03_13_2025_building_sim_3.xf): everything is -300 dBi :(
removing the copper middle part (03_13_2025_building_sim_4.xf): still bad
manually adding materials into XFdtd (03_13_2025_manual.xf): still bad, but different bad actually numbers-wise worse
- Passivated 18-8 Stainless Steel
- PEEK Plastic
- Dielectric: Foam Polyethylene (FPE)
- Inner Conductor: Solid Bare Copper Covered Aluminum
- Outer Conductor: Aluminum Tape
- Outer Braid: Tinned Copper
- Jacket: Polyethylene
- ABS Plastic
- Copper foil
I believe the feed replaces the coax cable in the middle so I am removing the inner conductor and assuming that it will be the same as the feed.
Dimensions of Curved Antenna (model based off this): (in cm for relevant parts)
- r1 = 3.20675
- height1 = 39.3683
- a1 = -0.0123505
- b1 = 0.418171
- r2 = 3.6116
- height2 = 18.605
- a2 = -0.0233028
- b2 = 0.369081
- Total height = 60.9733
Dimensions of Model in XF: (ignoring a's and b's as that's harder to measure..) (again in cm) (rough measurements in XF)
- r1 = 3.7
- h1 = 33.7441
- r2 = 3.4
- h2 = 18.71
- total height = 55.45 (no cable) 60.6459 (including cable)
Reference run XF settings:
- Removed the wire in the middle that was connecting the two sides: no difference (need to redo with it actually deleted + having the top plates copper) (03_11_2025_building_sim_1.xf)
- Removed middle wire AGAIN (03_13_2025_building_sim_0.xf): no difference, same issue
- Removed Supports and simulated(03_12_2025_building_sim_0.xf): This seems to have fixed the issue I'm seeing, so either the supports or the wire are shorting the antenna (or both!)
- Removed Supports ONLY(03_13_2025_building_sim_1.xf): still happening, though less extreme
For Initial Building Run:
Generation 13, individual 84 seems to be result being used (this assumption is based on the fact that when trying to straighten the sides for building they used this individual)
/fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/current_antenna_evo_build/XF_Loop/Evolutionary_Loop/Run_Outputs/2022_12_29
Elog Links for first building runs:
- Run Details: https://radiorm.physics.ohio-state.edu/elog/GENETIS/188
- Run Results + Gain Patterns: https://radiorm.physics.ohio-state.edu/elog/GENETIS/189
- Matching Circuit PCB: https://radiorm.physics.ohio-state.edu/elog/GENETIS/193
- Matching Circuit Parts: https://radiorm.physics.ohio-state.edu/elog/GENETIS/191
- Matching Circuit Schematic: https://radiorm.physics.ohio-state.edu/elog/GENETIS/230
- Matching Circuit Initial Design: https://radiorm.physics.ohio-state.edu/elog/GENETIS/183
- PoR Plots 1: https://radiorm.physics.ohio-state.edu/elog/GENETIS/194
- PoR Plots 2: https://radiorm.physics.ohio-state.edu/elog/GENETIS/196
- Straightened Sides 1: https://radiorm.physics.ohio-state.edu/elog/GENETIS/229
- Straightened Sides 2: https://radiorm.physics.ohio-state.edu/elog/GENETIS/236
At some point, another run seems to have been created for building with the crazy sides run here with REALIZED GAIN:
/fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/current_antenna_evo_build/XF_Loop/Evolutionary_Loop/Run_Outputs/2023_09_05_realized_curved_run
- Run is using the same freq of interest as what we currently use!!
Top 5 vEffective Scores of Realized Gain run:
Value: 5.09897, Generation: 41, Individual: 44 (Seems to be this one, modified)
Value: 5.07746, Generation: 37, Individual: 16
Value: 5.05508, Generation: 37, Individual: 5
Value: 5.04558, Generation: 38, Individual: 12
Value: 5.04026, Generation: 48, Individual: 5
GENETIS Useful Links:
- GENETIS Google Drive: https://drive.google.com/drive/folders/1iDamk46R2_oOLHtvsOg4jNy05mCiB7Sn?dmr=1&ec=wgc-drive-hero-goto
- Onboarding Materials: https://radiorm.physics.ohio-state.edu/elog/GENETIS/41
- Julie's Dissertation: https://radiorm.physics.ohio-state.edu/elog/Write-Ups/220404_161525/Julie_Rolla_Dissertation.pdf
- Julie's Candidacy: https://as-phy-radiorm.asc.ohio-state.edu/elog/Write-Ups/44
- ICRC Proceedings: https://arxiv.org/pdf/2112.00197
- Phys Rev D Paper: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.102002
- ARA Loop GitHub: https://github.com/osu-particle-astrophysics/GENETIS-ARA
- PUEO Loop GitHub: https://github.com/osu-particle-astrophysics/GENETIS_PUEO
- Shared Code GitHub: https://github.com/osu-particle-astrophysics/Shared-Code
- AraSim GitHub: https://github.com/ara-software/AraSim/tree/master
- pueoSim GitHub: https://github.com/PUEOCollaboration/pueoSim
|