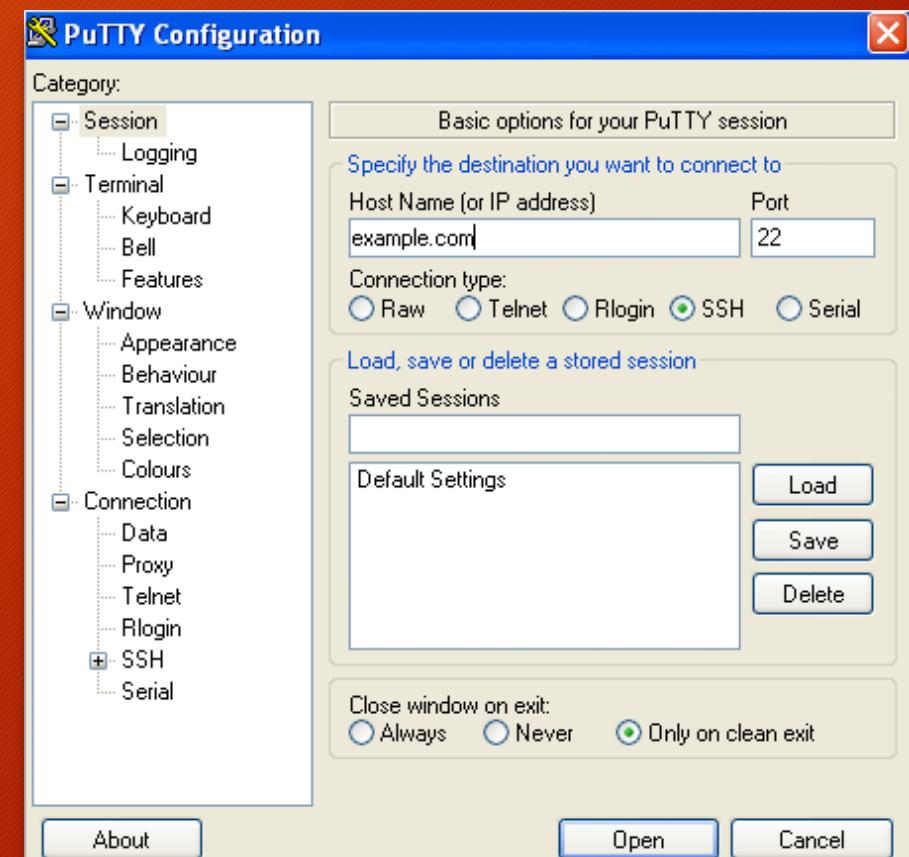


Getting Started with ANITA

Brian Clark

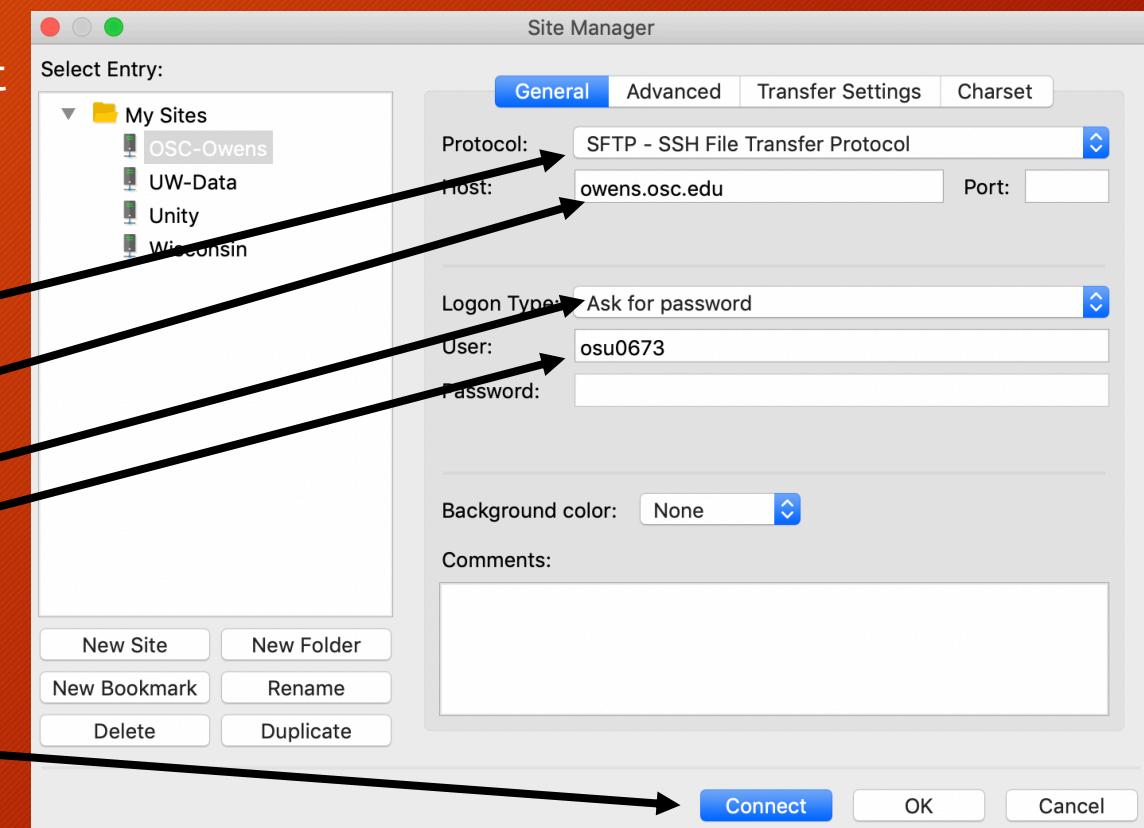
Last Updated: May 15, 2019

Step 0: Get Familiar with the Command Line


- All of our work will be done on computing clusters
- To interact with the computing cluster, we will need to use the *command line*
- It will allow us to go inside files, delete them, make new ones, run programs, etc.
- Follow this link to learn how to use it:
<https://www.codecademy.com/learn/learn-the-command-line>

Step 1: Get an OSC Account

- For the time being, lets start by having you all do your work on the computing cluster known as "owens"
- It is maintained by the Ohio Supercomputer Center
- Ask Amy to get an account


Step 2: Log-In

- Okay, now to log in!
- On a Linux or Mac:
 - Open the terminal, and type “`ssh name.#@owens.osc.edu`”
 - It might ask you to agree to an SSH security token; say yes
 - Then enter your password
- On a PC:
 - You will need to download and install an *ssh tunneling client*
 - The easiest is one called “putty”: <https://www.putty.org/>
 - Install putty, and then open it:
 - For “Host Name”, put “owens.osc.edu”
 - For Port choose “22”
 - For “Connection type” choose “SSH”
 - Click “Open”
 - You will then enter your name and password

Step 3: Learn How to Transfer Files

- Throughout your time working on any supercomputer, you'll need to transfer files
- The easiest way to transfer files is by using a file transfer client
- I recommend Filezilla: <https://filezilla-project.org/>
- Download and install it
- Then launch it
- Click “New Site”
 - Under “Protocol” select “SFTP”
 - Under “Host” put “owens.osc.edu”
 - Under “Logon Type” put “Ask for password”
 - Under “User” put “yourusername”
 - Then click “connect”

Step 3: Pt 2

- The way FileZilla works is very straightforward
- The left panel of your screen is *your* computer
- The right panel of the screen is the remote machine
- To transfer files you literally drag them from one screen to the next
- That's it
- Here are some nice tutorial:
 - <https://www.youtube.com/watch?v=rUNQphoGVwQ>
 - <https://www.youtube.com/watch?v=adxmlHDim6c>

Step 4: Download a copy of icemc

- To download a copy of icemc we are going to use a piece of software called “git”
- This is what’s known as a version control system, which allows developers to track how a piece of code evolves
- We won’t use that feature for a while; for now, we’re just gonna use it to access the ANITA Code
- Download icemc:
 - `git clone https://github.com/anitaNeutrino/icemc`

Step 5: Set Up Your Shell Environment

- Your *shell environment* defines variables you want to use
- First, put the files “`bashrc_anita.sh`” into your home directory.
- Open your “`.bashrc`” file and copy the contents of “`sample_bashrc.sh`” into it. Do the same with “`.bash_profile`”.
- I’m having you do this because it will *source* several pieces of software you will need (like `ROOT`) that I’ve already installed for you to save time
- Make sure to update the variables “`ICEMC_SRC_DIR`” and “`ICEMC_BUILD_DIR`” in your `.bashrc` to wherever you downloaded `icemc` to in the previous slide

Step 6: Compile icemc

- Next go inside the icemc directory by typing: `cd icemc`
- Then build by typing “make”
- If the make fails, you should follow the instructions on <https://github.com/anitaNeutrino/icemc#getting-icemc>

Step 7a: Fix a few things

- Make an “outputs” directory (`mkdir outputs`)
- Open the “`inputs.anita.3.conf`” file, and scroll down to the lines with “Digitizer path impulse response” and “Trigger path impulse response” and change the “1” after those lines to “0”
- Scroll further down to the lines “Digitizer noise from flight” and “Trigger noise from flight” and change the “1” after those lines to “0” also
- Because these instructions circumvent the installation of the `anitaBuildTool` (which real impulse response and noise requires) we have to disable those features

Step 7b: Fix a few more things

- Go into the icemc directory, and open the Makefile
 - Go down near line 19 and 20, and comment out (put a “#” in front of) the lines that say ANITA3_EVENTREADER and ANITA3_EVENTCORRELATOR”

Step 8: Test Run icemc

- Now, we'll make our first set of simulated results!
- Now, execute the command
“./icemc -i inputs.anita3.conf -o outputs/ -n 50000”
 - This will simulate 50,000 neutrinos
- See if it execute successfully; also, you should check the outputs directory for a bunch of new files
- If it did, well done!

Step 9: Make your First Plot

- Okay, now that we have data, we can make our first plot!
- Move the following two files into your `icemc` directory:
 - `“test_plot.mk”`: the **makefile**, which tells the computer how to put together **your code**
 - `“test_plot.cc”`: the **code to be put together**
- Run `“make -f test_plot.mk”` (the `-f` says “use this file”)
- Then, execute the plot making code: `“./test_plot outputs/icefinal.root”`
- This will produce a plot! Revel in your brilliance.
- You should actually *read* `“test_plot.cc”` **very carefully** to understand everything it’s doing (the explanations are **in the comments**)