Updates and Results Talks and Posters Advice Ideas Important Figures Write-Ups Outreach How-To Funding Opportunities GENETIS
  Place to document instructions for how to do things  ELOG logo
Message ID: 28     Entry time: Fri Oct 26 18:08:43 2018
Author: Jorge Torres 
Subject: Analyzing effective volumes 
Project: Analysis 

Attaching some scripts that help processing the effective volumes. This is an extension of what Brian Clark did in a previous post (http://radiorm.physics.ohio-state.edu/elog/How-To/27)

There are 4 files attached:

- veff_aeff2.C and veff_aeff2.mk. veff_aeff2.C produces Veff_des$1.txt ($1 can be A or B or C). This file contains the following columns: energy, veff, veff_error, veff1 (PA), veff2 (LPDA), veff3 (bicone), respectively. However, the energies are not sorted.

-veff.sh: this bash executable runs veff_aeff2.C for all (that's what the "*" in the executable is for) the root output files, for a given design (A, B, C). You need to modify the location of your output files, though. Run like "./veff.sh A", which will execute veff_aeff2.C and produce the veff text files. Do the same for B or C.

-make_plot.py: takes Veff_des$1.txt, sorts energies out, plots the effective volumes vs. energies, and produces a csv file containing the veffs (just for the sake of copying and pastting on the spreadsheets). Run like "pyhton make_plot.py".

 

 

 

Attachment 1: veff.sh  917 Bytes  Uploaded Fri Oct 26 19:21:24 2018  | Hide | Hide all | Show all
nohup ./veff_aeff2 3000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_16.5.txt.run* &
nohup ./veff_aeff2 3000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_17.txt.run* &   
nohup ./veff_aeff2 3000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_17.5.txt.run* &
nohup ./veff_aeff2 5000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_18.txt.run* &
nohup ./veff_aeff2 5000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_18.5.txt.run* &
nohup ./veff_aeff2 7000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_19.txt.run* &
nohup ./veff_aeff2 7000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_19.5.txt.run* &
nohup ./veff_aeff2 7000 3000 $1 /users/PAS0654/osu8354/outputs_signal_noise/des"$1"/AraOut.des"$1"_20.txt.run* &

Attachment 2: veff_aeff2.C  9 kB  Uploaded Fri Oct 26 19:21:52 2018  | Show | Hide all | Show all
Attachment 3: veff_aeff2.mk  3 kB  Uploaded Fri Oct 26 19:22:27 2018  | Show | Hide all | Show all
Attachment 4: make_plot.py  5 kB  Uploaded Fri Oct 26 19:22:44 2018  | Hide | Hide all | Show all
# -*- coding: utf-8 -*-
import numpy as np
import sys
import matplotlib.pyplot as plt
from pylab import setp
from matplotlib.pyplot import rcParams
import csv
import pandas as pd

rcParams['mathtext.default'] = 'regular'

def read_file(finame):
    fi = open(finame, 'r')
    rdr = csv.reader(fi, delimiter=',', skipinitialspace=True)
    table = []
    for row in rdr:
    #    print(row)
        energy = float(row[0])
        veff = float(row[1])
        veff_err = float(row[2])
        veff1 = float(row[3])
        veff2 = float(row[4])
        veff3 = float(row[5])
        row = {'energy':energy, 'veff':veff, 'veff_err':veff_err, 'veff1':veff1, 'veff2':veff2, 'veff3':veff3}
        table.append(row)
    df=pd.DataFrame(table)
    df_ordered=df.sort_values('energy',ascending=True)
 #   print(df_ordered)
    return df_ordered

def beautify_veff(this_ax):
    sizer=20
    xlow = 1.e16 #the lower x limit
    xup = 2.e20 #the uppper x limit
    ylow =1e-3 #the lower x limit
    yup = 6.e1 #the uppper x limit
    this_ax.set_xlabel('Energy [eV]',size=sizer) #give it a title
    this_ax.set_ylabel('[V$\Omega]_{eff}$  [km$^3$sr]',size=sizer)
    this_ax.set_yscale('log')
    this_ax.set_xscale('log')
    this_ax.tick_params(labelsize=sizer)
    this_ax.set_xlim([xlow,xup]) #set the x limits of the plot
    this_ax.set_ylim([ylow,yup]) #set the y limits of the plot
    this_ax.grid()
    this_legend = this_ax.legend(loc='upper left')
    setp(this_legend.get_texts(), fontsize=17)
    setp(this_legend.get_title(), fontsize=17)

def main():
    
    """   

    arasim_energies = np.array([3.16e+16, 1e+17, 3.16e+17, 1e+18, 3.16e+18, 1e+19, 3.16e+19, 1e+20])
    arasim_energies2 = np.array([3.16e+16, 1e+17, 3.16e+17, 1e+18, 1e+19, 3.16e+19, 1e+20])
    #arasim_desA_veff = np.array([0.080894,0.290695,0.943223,2.388708,4.070498,6.824112,10.506490,13.969418])
    arasim_desA_veff_s = np.array([0.067384,0.289591,0.996509,2.464464,4.945600,8.735506,13.357300,18.751915])
   # arasim_desA_veff_ice = np.array([0.066291,0.303620,0.927647,2.427554,4.962093,8.465895,13.425852,18.706528])
    arasim_desA_error = np.array([0.008367,0.017401,0.032222,0.084223,0.119240,0.221266,0.272460,0.320456])
  #  arasim_desA_error_ice = np.array([0.008345,0.017748,0.031295,0.083747,0.119370,0.217717,0.273075,0.319872])
   # arasim_desB_veff = np.array([0.124111,0.417102,1.310555,3.648494,4.070E+0,11.675189,18.393961,13.688909])
    arasim_desB_veff_s = np.array([0.064937,0.355747,1.289947,3.821705,8.002805,15.352981,25.391282,18.009545])
   # arasim_desB_veff_ice = np.array([0.080070,0.340927,1.369081,3.938550,8.211407,15.190858,25.066541,18.021033])
    arasim_desB_error = np.array([0.008268,0.019317,0.036926,0.105445,0.152488,0.296617,0.377997,0.314314])
   # arasim_desB_error_ice = np.array([0.009220,0.019144,0.037966,0.107189,0.154430,0.293728,0.375827,0.314244])
    arasim_desA_veff1_sm = np.array([0.054,0.231,0.868,2.239,4.586,8.339,12.910,18.301])
    arasim_desA_veff2_sm = np.array([0.009,0.036,0.098,0.323,0.705,1.167,2.169,3.130])
    arasim_desA_veff3_sm = np.array([0.011,0.074,0.193,0.664,1.208,2.347,3.689,4.814])
    
    arasim_desA_veff1 = np.array([0.053,0.282,1.108,3.462,7.486,14.613,24.682,17.557])
    arasim_desA_veff2 = np.array([0.006,0.040,0.121,0.322,0.636,1.308,1.961,2.708])
    arasim_desA_veff3 = np.array([0.006,0.065,0.188,0.638,1.187,2.270,3.301,4.322])
    
    """
    veff_A=read_file("Veff_desA.txt")
    veff_B=read_file("Veff_desB.txt")
    print("desA is \n", veff_A)
    print("desB is \n", veff_B)

    dfA = veff_A[['veff','veff_err']]
    dfB = veff_B[['veff','veff_err']]
    dfA.to_csv('veffA.csv', sep='\t',index=False)
    dfB.to_csv('veffB.csv', sep='\t',index=False)

    
    fig = plt.figure(figsize=(11,8.5))
    ax1 = fig.add_subplot(1,1,1)
    ax1.plot(veff_A['energy'], veff_A['veff'],'bs-',label='Strawman',markersize=8,linewidth=2)
    ax1.plot(veff_B['energy'], veff_B['veff'],'gs-',label='Punch @100 m',markersize=8,linewidth=2)

    ax1.fill_between(veff_A['energy'], veff_A['veff']-veff_A['veff_err'], veff_A['veff']+veff_A['veff_err'], alpha=0.2, color='red')
    ax1.fill_between(veff_B['energy'], veff_B['veff']-veff_B['veff_err'], veff_B['veff']+veff_B['veff_err'], alpha=0.2, color='red')
    beautify_veff(ax1)
    ax1.set_title("Punch vs Strawman, noise + signal",fontsize=20)
    fig.savefig("desAB.png",edgecolor='none',bbox_inches="tight") #save the figure


    
    fig2 = plt.figure(figsize=(11,8.5))
    ax2 = fig2.add_subplot(1,1,1)
	
        #Triggers plot
    ax2.plot(veff_B['energy'], veff_B['veff1'],'g^-',label='Phased array (Punch)',markersize=8,linewidth=2)
    ax2.plot(veff_A['energy'], veff_A['veff1'],'gs-',label='Phased array (Strawman)',markersize=8,linewidth=2)
    ax2.plot(veff_B['energy'], veff_B['veff2'],'b^-',label='LPDAs (Punch)',markersize=8,linewidth=2)
    ax2.plot(veff_A['energy'], veff_A['veff2'],'bs-',label='LPDAs (Strawman)',markersize=8,linewidth=2)
    ax2.plot(veff_B['energy'], veff_B['veff3'],'y^-',label='Bicones (Punch)',markersize=8,linewidth=2)
    ax2.plot(veff_A['energy'], veff_A['veff3'],'ys-',label='Bicones (Strawman)',markersize=8,linewidth=2)
    ax2.set_title("Triggers contribution, noise + signal",fontsize=20)
    beautify_veff(ax2)
    fig2.savefig("desAB_triggers.png",edgecolor='none',bbox_inches="tight") #save the figure

        
main()
        
        
ELOG V3.1.5-fc6679b