Updates and Results Talks and Posters Advice Ideas Important Figures Write-Ups Outreach How-To Funding Opportunities GENETIS
  Place to document instructions for how to do things  ELOG logo
Message ID: 48     Entry time: Thu Jun 8 16:29:45 2023
Author: Alan Salcedo  
Subject: Doing IceCube/ARA coincidence analysis 
Project:  

These documents contain information on how to run IceCube/ARA coincidence simulations and analysis. All technical information of where codes are stored and how to use them is detailed in the technical note. Other supportive information for physics understanding is in the powerpoint slides. The technical note will direct you to other documents in this elog in the places where you may need supplemental information.

Attachment 1: IceCube_ARA_Coincidence_Analysis___Technical_Note.pdf  2.187 MB  Uploaded Thu Jun 8 17:52:42 2023
Attachment 2: ICARA_Coincident_Events_Introduction.pptx  1.577 MB  Uploaded Thu Jun 8 17:53:04 2023
Attachment 3: ICARA_Analysis_Template.ipynb  4.317 MB  Uploaded Thu Jun 8 17:53:26 2023  | Show | Hide all | Show all
Attachment 4: IceCube_Relative_to_ARA_Stations.ipynb  5 kB  Uploaded Thu Jun 8 17:53:46 2023  | Hide | Hide all | Show all
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "a950b9af",
   "metadata": {},
   "source": [
    "**This script is simply for me to calculate the location of IceCube relative to the origin of any ARA station**\n",
    "\n",
    "The relevant documentation to understand the definitions after the imports can be found in https://elog.phys.hawaii.edu/elog/ARA/130712_170712/doc.pdf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "b926e2e3",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "901b442b",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Definitions of translations in surveyor's coordinates:\n",
    "\n",
    "t_IC_to_ARAg = np.array([-24100, 1700, 6400])\n",
    "t_ARAg_to_A1 = np.array([16401.71, -2835.37, -25.67])\n",
    "t_ARAg_to_A2 = np.array([13126.7, -8519.62, -18.72])\n",
    "t_ARAg_to_A3 = np.array([9848.35, -2835.19, -12.7])\n",
    "\n",
    "#Definitions of rotations from surveyor's axes to the ARA Station's coordinate systems\n",
    "\n",
    "R1 = np.array([[-0.598647, 0.801013, -0.000332979], [-0.801013, -0.598647, -0.000401329], \\\n",
    "               [-0.000520806, 0.0000264661, 1]])\n",
    "R2 = np.array([[-0.598647, 0.801013, -0.000970507], [-0.801007, -0.598646,-0.00316072 ], \\\n",
    "               [-0.00311277, -0.00111477, 0.999995]])\n",
    "R3 = np.array([[-0.598646, 0.801011, -0.00198193],[-0.801008, -0.598649,-0.00247504], \\\n",
    "               [-0.00316902, 0.000105871, 0.999995]])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ab2d3206",
   "metadata": {},
   "source": [
    "**Using these definitions, I should be able to calculate the location of IceCube relative to each ARA station by:**\n",
    "\n",
    "$$\n",
    "\\vec{r}_{A 1}^{I C}=-R_1\\left(\\vec{t}_{I C}^{A R A}+\\vec{t}_{A R A}^{A 1}\\right)\n",
    "$$\n",
    "\n",
    "We have a write-up of how to get this. Contact salcedogomez.1@osu.edu if you need that.\n",
    "\n",
    "Alex had done this already, he got that \n",
    "\n",
    "$$\n",
    "\\vec{r}_{A 1}^{I C}=-3696.99^{\\prime} \\hat{x}-6843.56^{\\prime} \\hat{y}-6378.31^{\\prime} \\hat{z}\n",
    "$$\n",
    "\n",
    "Let me verify that I get the same"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "912163d2",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "IC coordinates relative to A1 (in):  [-3696.98956579 -6843.55800868 -6378.30926681]\n",
      "IC coordinates relative to A1 (m):  [-1127.13096518 -2086.4506124  -1944.60648378]\n",
      "Distance of IC from A1 (m):  3066.788996234438\n"
     ]
    }
   ],
   "source": [
    "IC_A1 = -R1 @ np.add(t_ARAg_to_A1, t_IC_to_ARAg).T\n",
    "print(\"IC coordinates relative to A1 (in): \", IC_A1)\n",
    "print(\"IC coordinates relative to A1 (m): \", IC_A1/3.28)\n",
    "print(\"Distance of IC from A1 (m): \", np.sqrt((IC_A1[0]/3.28)**2 + (IC_A1[1]/3.28)**2 + (IC_A1[2]/3.28)**2))"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f9c9f252",
   "metadata": {},
   "source": [
    "Looks good!\n",
    "\n",
    "Now, I just get the other ones:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "8afa27c6",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "IC coordinates relative to A2 (in):  [ -1100.33577313 -12852.0589083   -6423.00776043]\n",
      "IC coordinates relative to A2 (m):  [ -335.46822352 -3918.31064277 -1958.2340733 ]\n",
      "Distance of IC from A2 (m):  4393.219537890439\n"
     ]
    }
   ],
   "source": [
    "IC_A2 = -R2 @ np.add(t_ARAg_to_A2, t_IC_to_ARAg).T\n",
    "print(\"IC coordinates relative to A2 (in): \", IC_A2)\n",
    "print(\"IC coordinates relative to A2 (m): \", IC_A2/3.28)\n",
    "print(\"Distance of IC from A2 (m): \", np.sqrt((IC_A2[0]/3.28)**2 + (IC_A2[1]/3.28)**2 + (IC_A2[2]/3.28)**2))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9959d0a4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "IC coordinates relative to A3 (in):  [ -7609.73440732 -12079.45719852  -6432.31164368]\n",
      "IC coordinates relative to A3 (m):  [-2320.04097784 -3682.76134101 -1961.07062307]\n",
      "Distance of IC from A3 (m):  4774.00452685144\n"
     ]
    }
   ],
   "source": [
    "IC_A3 = -R3 @ np.add(t_ARAg_to_A3, t_IC_to_ARAg).T\n",
    "print(\"IC coordinates relative to A3 (in): \", IC_A3)\n",
    "print(\"IC coordinates relative to A3 (m): \", IC_A3/3.28)\n",
    "print(\"Distance of IC from A3 (m): \", np.sqrt((IC_A3[0]/3.28)**2 + (IC_A3[1]/3.28)**2 + (IC_A3[2]/3.28)**2))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "093dff67",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}
ELOG V3.1.5-fc6679b