

Gamma-Ray Bursts in ANITA-4

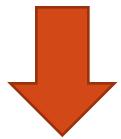
Oindree Banerjee

Department of Physics
The Ohio State University
Advisor: Prof. Amy Connolly

February 22, 2017

What are Gamma Ray Bursts (GRBs)?

- Most luminous explosions: Luminosity $\sim 10^{52} \text{ erg s}^{-1}$
(entire galaxy: $10^{45} \text{ erg s}^{-1}$)
- Brief: **0.1 s to several 100s s**
- Far: most occur at $\sim 1 \text{ Gpc}$ from us
- Isotropically distributed in the sky
- Rare: $\sim 0.3 \text{ Gpc}^{-3} \text{ yr}^{-1}$ (per volume per year)

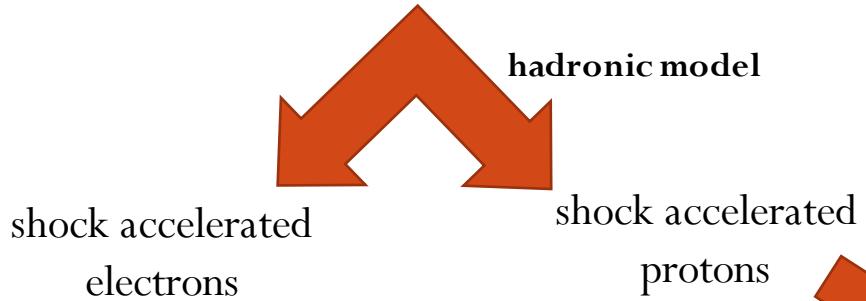

$$1 \text{ erg} = 10^{-7} \text{ J}$$

$$\text{pc} = 3.26 \text{ light years}$$

What are Gamma Ray Bursts (GRBs)?

- Two populations:
 - **Long** ($t_{\gamma} > 2$ s, typically **20** s): associated with **hypernovae** (big supernovae, ≥ 10 x more luminous)
 - **Short** ($t_{\gamma} < 2$ s, typically **0.2** s): **neutron star – neutron star (NS-NS)** or **neutron star – black hole (NS-BH) mergers**
- Around 1000 GRBs per year, **2/3** are Long
- Two part emission: prompt, afterglow (can last several hours)

Cataclysmic stellar event resulting in
NS or BH


Sudden release of gravitational energy ($\sim M_{\text{sun}}$) in
compact volume (10s of km)

**<1% goes into fireball of
 γ - rays, e^{\pm} , baryons**

Kinetic energy of relativistically expanding fireball

4

1. synchrotron
2. inverse-Compton

γ - rays

$p\gamma \rightarrow \pi^+, \dots$

High energy
neutrinos

Fireball model

Neutron star (NS) or
Black Hole (BH)

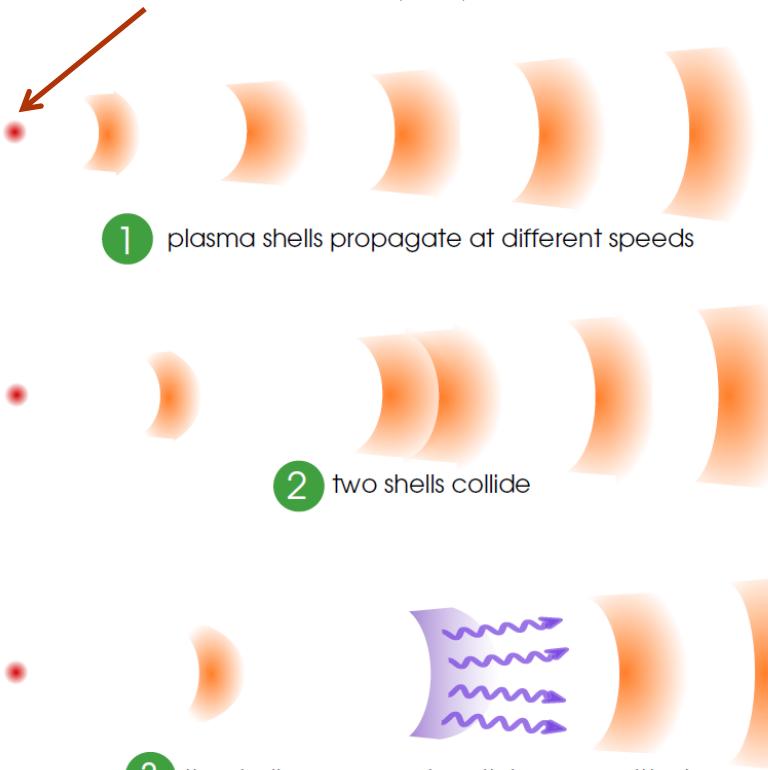
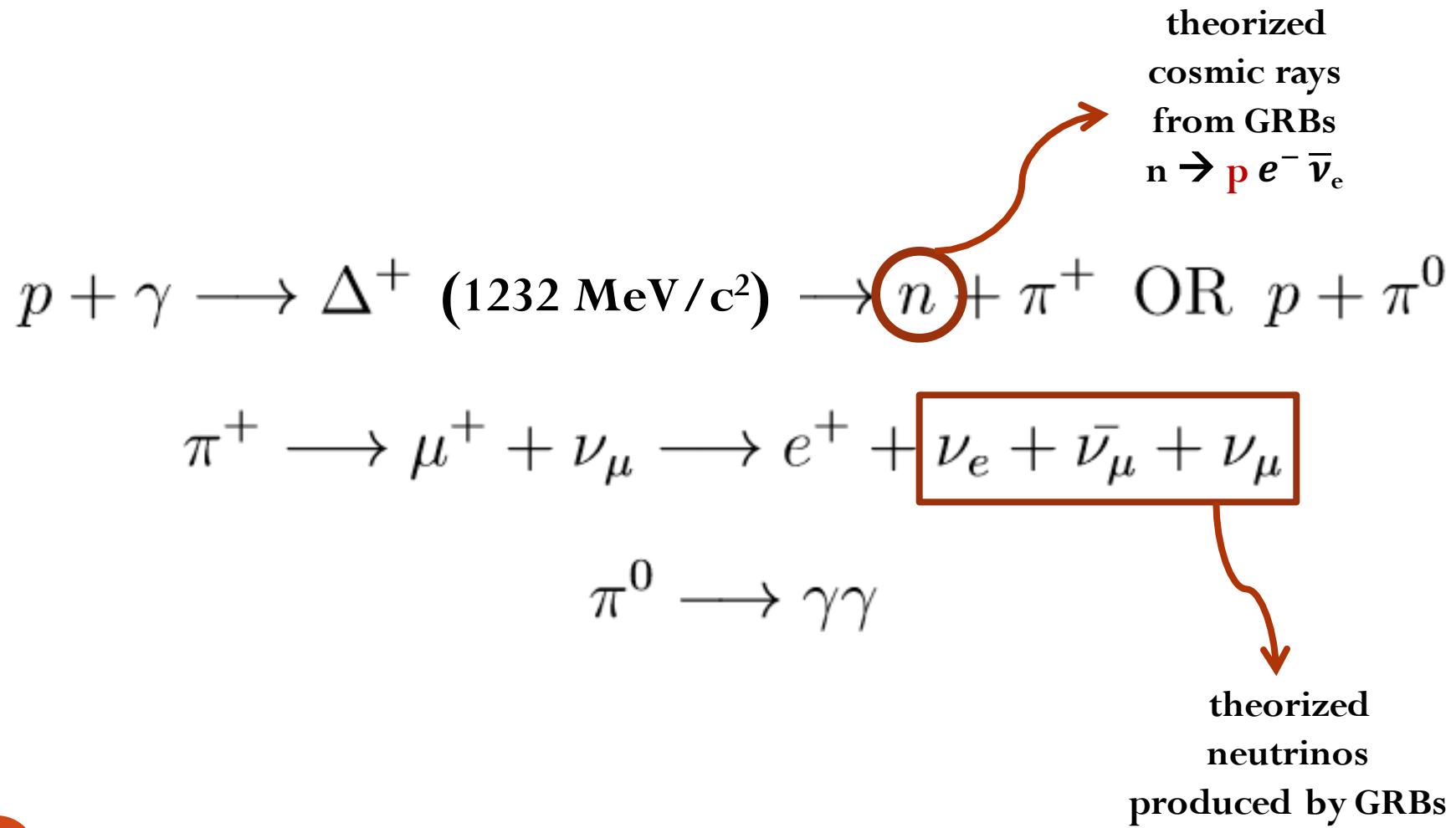



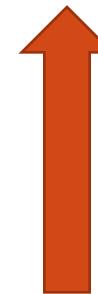
Image credit: Mauricio Bustamante

Theory: Photo-meson interaction that dominates neutrino production in GRBs

WB Theory: Particle kinematics relation tells us expected GRB neutrino energies

$$\varepsilon_\gamma \varepsilon_p \quad \cong \quad 0.2 \text{ GeV}^2 \Gamma^2$$

Step 1a



Insert typical observed gamma-ray energy of 1 MeV (prompt emission)
OR 100 eV (afterglow emission)

Step 3

$$\varepsilon_\nu \sim 5\% \varepsilon_p$$

Step 2
Solve for proton
energy ε_p

Step 1b

Insert Lorentz factor of 100

Result

- **Prompt** emission: neutrino energy $\sim 10^{14} \text{ eV}$
- **Afterglow** emission: neutrino energy $\sim 10^{18} \text{ eV}$

Past GRB search by ANITA collaboration

- Abby, Kim et al. paper is here
- Using ANITA-2 data
- 31 day flight, 26 GRBs recorded by Swift or Fermi
- Only 12 GRBs (that had thermal-like background periods) were analyzed
- None had altitude angle between -25° and the horizon (considered good geometry for ANITA)
- GRB with most promising geometry had altitude of -25.7°

Past GRB search by ANITA collaboration

- Assumed input E^{-4} spectrum (theorized afterglow spectrum)
- Constrained search in **time** which reduced background, analysis threshold
 - GRB signal allowed to be in **10min** window each so total 120mins
 - Reduced background by $(120\text{mins}/31\text{days}) = \underline{\underline{0.002}}$ (compared to diffuse search) and therefore allowed for reduction in threshold
 - But 10mins only allows for quick afterglows

Possible ANITA-4 GRB search

- Search in **constrained, longer** time windows
 - e.g. per GRB, signal allowed to be in time window:
minus 10mins to plus 6hrs = total 370mins
 - To have improved opportunity for detection of
theorized afterglow neutrinos which ANITA is
sensitive to
 - Reduce background due to time windows by
 $((370\text{mins} \times 26\text{GRBs}) / 29\text{days}) = \underline{0.230}$

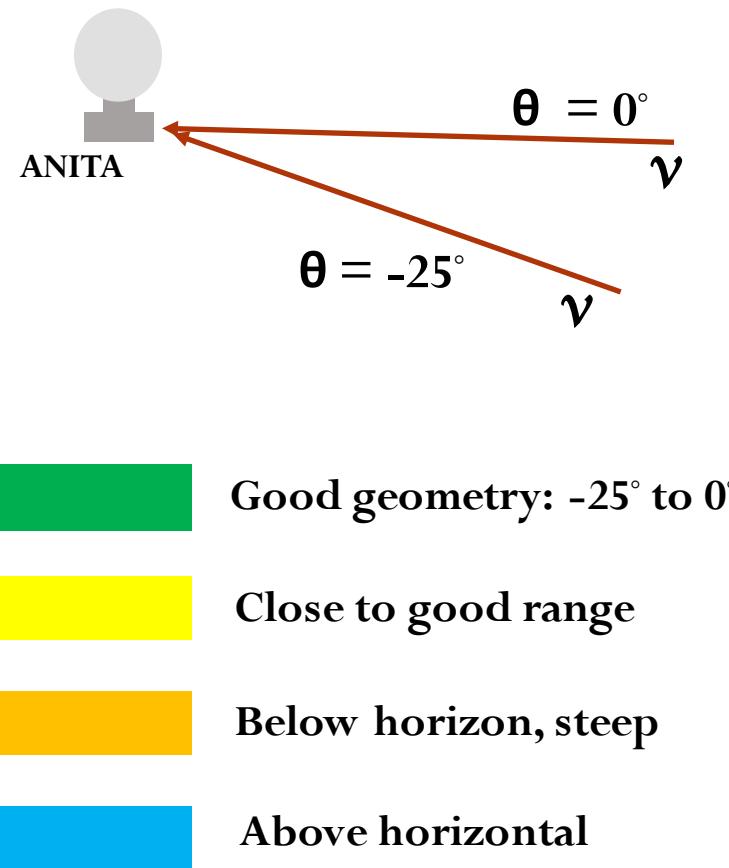
New neutrino direction constraint?

- Constrain search in neutrino direction also
 - This has not been done yet
 - Can try to develop techniques as part of my thesis work to constrain direction
 - e.g. per GRB, if signal is allowed to be in $20^\circ \times 20^\circ = 400 \text{ degrees}^2$ window (if we can do that)
 - reduce background due to direction windows by $(400 \text{ sq. degrees}) / (30 \text{ degrees} (\theta \text{ range}) \times 360 \text{ degrees} (\phi \text{ range})) = 0.037$

Result of time and direction constraints

- Reduce background by $(0.230 \times 0.037) = \underline{0.008}$
(compared to diffuse search)
- Order of magnitude, \sim same reduction factor as past search if we can constrain the neutrino direction to 400 degrees²
- Plus, sensitivity to longer afterglows which are more likely to produce UHE neutrinos

NeuCosmA


- Use NeuCosmA for neutrino flux predictions (like in ARA GRB paper)
 - both prompt and afterglow models being upgraded this year to more accurate versions
- can obtain custom spectra for each GRB
- Mauricio Bustamante at OSU is eager to help

Reject fewer GRBs?

- Past ANITA GRB search rejected 14 out of 26 GRBs due to the presence of anthropogenic noise in the time window
- With ANITA-4, we might be able to keep more GRBs due to reduction of anthropogenic noise in triggered events due to TUFFs and LCP/RCP

26 GRBs during ANITA-4 flight and their altitudes (θ)

GRB list	Altitude (degrees)
GRB161202A	-10.953
GRB161203A	no data yet
GRB161205A	-20.477
GRB161206A	-62.117
GRB161207B	-25.799
GRB161207A	-58.076
GRB161210A	11.660
GRB161211-072730	-2.723
GRB161212A	19.278
GRB161213A	60.664
GRB161214A	-23.943
GRB161214B	38.802
GRB161217A	76.067
GRB161217B	7.424
GRB161217C	no data yet
GRB161218A	-36.671
GRB161218B	-74.304
GRB161219A	0.242
GRB161219B	-26.686
GRB161220A	-44.670
GRB161223A	0.981
GRB161224A	69.031
GRB161228A	40.615
GRB161228B	-21.161
GRB161228C	76.201
GRB161229A	24.798

Past search: GRB with most promising geometry had altitude of -25.7°

**GRB databases still updating, numbers can change, errors next time

Next Steps

- Obtain GRB time durations and photon energy spectra as GRB databases get updated
- Contribute to completion of ongoing diffuse search efforts
- Learn to generate GRB spectra with NeuCosmA by end of Summer (Mauricio leaves OSU)
- Check out noise levels in background regions surrounding each GRB
- Start to look at techniques for constraining neutrino direction

Thank you!

Back up slides

Early (1997-2000) theoretical predictions by Waxman-Bahcall (WB)

- From **cosmic ray observation** WB set model-independent **upper bound** on high energy neutrino intensity:
 - $E_\nu^2 \Phi_\nu < 2 \times 10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}$
- ~ 20 GRB muon neutrinos of energy $\sim 10^{14} \text{ eV}$ per year over 4π steradian predicted for detection by km^2 neutrino detector
- ~ 0.06 GRB muon neutrinos of energy $10^{17} - 10^{19} \text{ eV}$ per year over 2π steradian predicted for detection by km^2 neutrino detector

Fireball FAQs

- **Expands – why?**
 - Observed photon luminosity \gg Eddington luminosity = $1.3 \times 10^{38} (\mathbf{M}/\mathbf{M}_{\text{sun}}) \text{ erg s}^{-1}$
 - Above which radiation pressure exceeds self-gravity, so the fireball will expand
- **Highly relativistic – why?**
 - Mean free path of $\gamma\gamma \rightarrow e^\pm$ in isotropic plasma (if sub-relativistically expanding fireball) would be very short
 - But many bursts show spectra extending above 1 GeV so flow must be able to avoid degrading these via $\gamma\gamma$ interactions
 - Flow must be expanding with Lorentz factor $\Gamma \geq 100$

Break energy

- Theory → GRB neutrino flux follows broken power law given by ϵ_ν^{-b} where $b = 2$ for prompt emission and $b = 4$ for afterglow. Break energy is the energy at which b changes.

