

Magnetic Monopole Searches in Astroparticle Physics

Oindree Banerjee
The Ohio State University
June 20, 2016

What is a magnetic monopole and why do we look for them?

- ▶ Magnetic poles always found in pairs
- ▶ Magnetic monopole would possess **one** magnetic pole
- ▶ Asymmetry in Maxwell's equations
- ▶ Motivate us to look for **magnetic charge**

$$\nabla \cdot \mathbf{D} = \rho$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$$

Dirac's Quantization of Magnetic Charge

- ▶ Quantization of electric charge is long-standing mystery
- ▶ Dirac showed that existence of magnetic charge **leads to electric charge quantization**
- ▶ Calculated simple relationship between fundamental magnetic charge g and the quantum of electric charge e given by
- ▶ $g = e / 2\alpha$
- ▶ in Gaussian units, where α is the fine structure constant ($1/137$)

Suppose magnetic charge exists, rewrite
Maxwell's equations with ρ_m and \mathbf{J}_m

$$\nabla \cdot \mathbf{D} = \rho_e$$

$$\nabla \cdot \mathbf{B} = \rho_m$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} - \mathbf{J}_m$$

$$\nabla \times \mathbf{H} = \mathbf{J}_e + \frac{\partial \mathbf{D}}{\partial t}$$

Perform a duality transformation of the fields and the sources

$$E = E' \cos x + H' \sin x$$

$$\rho_e = \rho_e' \cos x + \rho_m' \sin x$$

$$B = -D' \sin x + B' \cos x$$

$$\rho_m = -\rho_e' \sin x + \rho_m' \cos x$$

$$H = -E' \sin x + H' \cos x$$

$$J_e = J_e' \cos x + J_m' \sin x$$

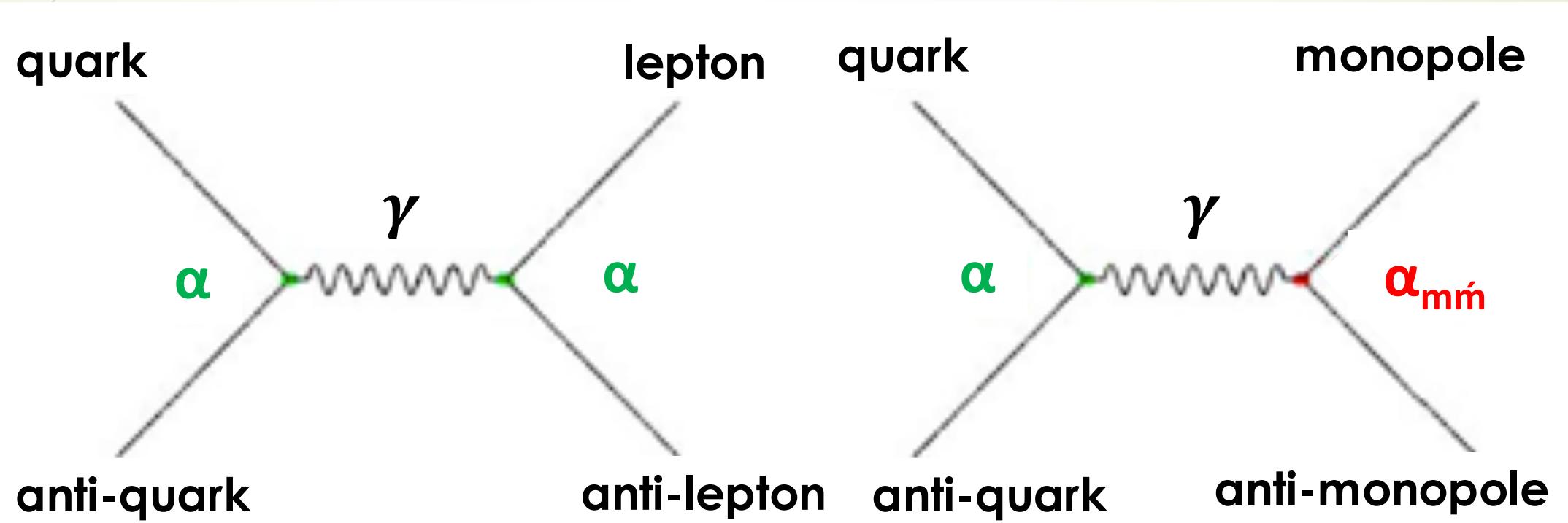
$$D = D' \cos x + B' \sin x$$

$$J_m = -J_e' \sin x + J_m' \cos x$$

Maxwell's equations with magnetic charge remain invariant under duality transformation

Invariance under duality transformation means that

- ▶ it is matter of convention for particle to have electric charge but no magnetic charge
- ▶ maybe ALL particles have the same **ratio** of electric to magnetic charge leading to the simple equation $\mathbf{g} = \mathbf{e} / 2\alpha$
- ▶ if they do, we can **choose** α so that $\rho_m = 0, \mathbf{J}_m = 0$
- ▶ to get Maxwell's equations as we know them, i.e. without magnetic charge



- ▶ **point is: there is lots of motivation to look for magnetic charge**

Intermediate Mass Monopole (IMM)

- ▶ Grand Unified Theory (GUT) predicts magnetic monopoles at energy scale $\sim 10^{16}$ GeV
- ▶ Theorized magnetic charges IMM's have mass \ll GUT scale and are **ultra-relativistic**
 - ▶ Mass: $10^5 - 10^{12}$ GeV
 - ▶ Implies Lorentz factor: $10^{11} - 10^4$
- ▶ Expect Large Cherenkov Emission
- ▶ Should be readily detectable by Astroparticle experiments like ANITA, RICE

Feynman diagrams

The experiments and corresponding results we discuss here:

- ▶ ANITA: Antarctic Impulsive Transient Antenna
- ▶ RICE: Radio Ice Cherenkov Experiment

What is ANITA?

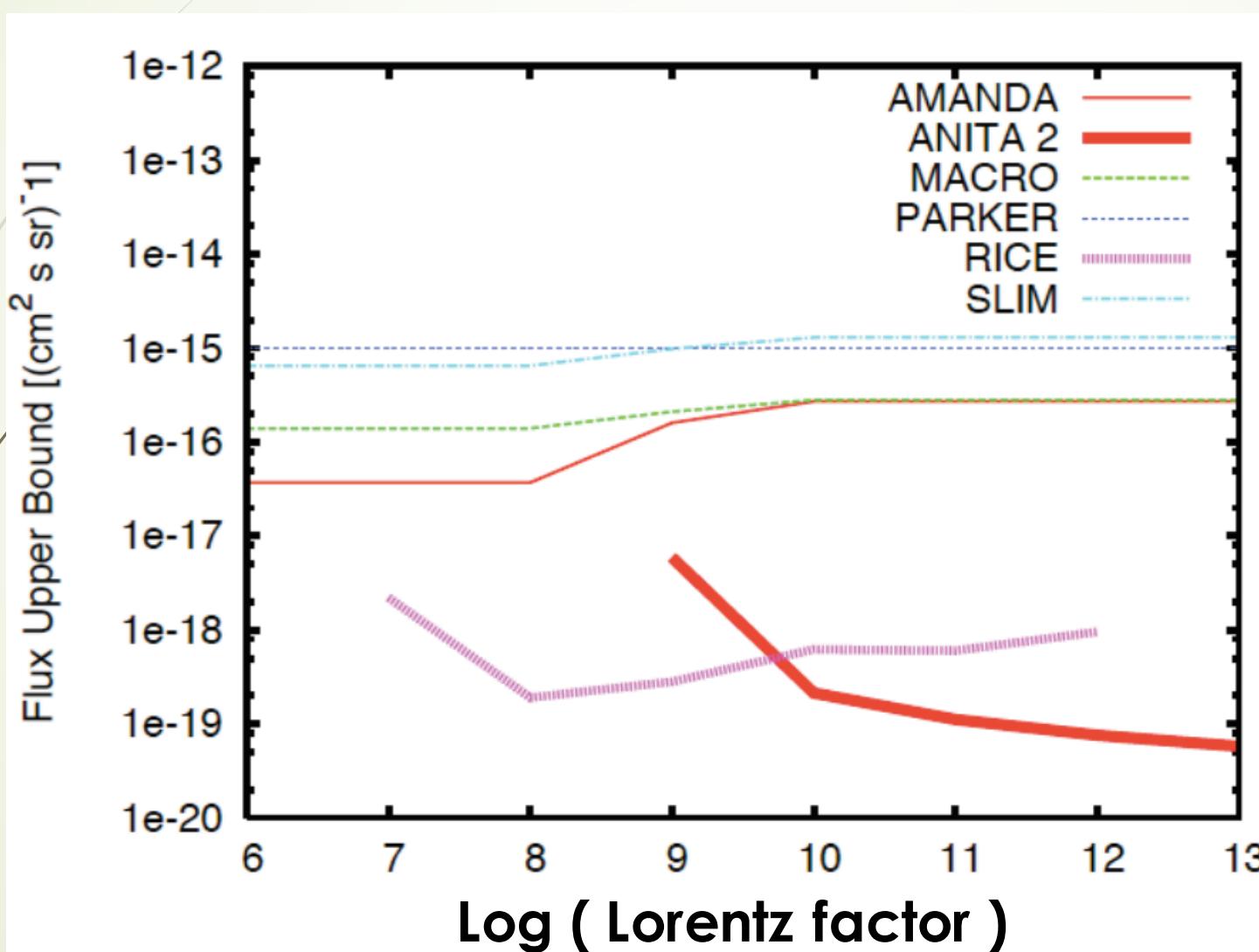
- ▶ Balloon-borne antenna array primarily designed to detect **radio wave pulses** caused by **neutrino interactions with matter (ice)**
- ▶ From **elevation of ~ 38 km** detector scans Antarctic continent in circumpolar trajectory
- ▶ ANITA has flown thrice so far, **ANITA-2** (40 antennas) searched for monopoles
- ▶ After launching from McMurdo Station, ANITA-2 was aloft for **31 days**

ANITA simulation for monopoles

- ▶ **Monte Carlo simulation** needed to figure out ANITA's **sensitivity** to monopoles (IMM's)
- ▶ Model of **monopole energy loss** based on the muon/tau energy loss model of **Dutta et al**
 - ▶ $-dE/dx = \alpha + \beta E$
 - ▶ α is term for ionization, β is term for bremsstrahlung, pair production, photonuclear effect
 - ▶ **Photonuclear effect** is the dominant energy loss mechanism at $\gamma > 10^4$, while ionization energy losses dominate below this value of γ

ANITA-2 trigger

- ▶ ANITA-2 has hierarchical triggering scheme (L0 – L3) and 4 digitizing buffers
- ▶ allows relatively low neutrino detection trigger threshold while maintaining $\sim \text{Hz}$ thermal noise data rate written to disk
- ▶ **Monopole signature expected to consist of first 4 threshold-crossings (~ 500 ns total time) once the monopole comes into view**
- ▶ **remaining signal produced by monopole ionization trail not registered due to dead-time as 4 buffers fill**


ANITA analysis

- ▶ In entire data sample, only 4 events contained 4 rapid triggers satisfying the 500 ns maximum total trigger time criterion
- ▶ all 4 were background dominated by CW lines
- ▶ whereas monopole signals should exhibit broadband characteristics of temporally-sharp, coherent radio wavelength signals
- ▶ so no monopoles were found

RICE

- ▶ RICE consists of **16 data-taking antennas** buried in the Antarctic ice ~ 1 km from geographic South Pole
- ▶ Antennas roughly within a **cube of ice ~ 200 m on a side** with its **center ~ 150 m below the surface**
- ▶ have peak sensitivity in the **200–500 MHz regime**
- ▶ Used same model of **monopole energy loss (Dutta et al)** as ANITA
- ▶ Trigger occurs if **4 or more antennas register high-amplitude voltages** within a **time coincidence of 1.25 microseconds**
- ▶ Triggers initiate an **8.192 μ s waveform capture**, sampled at a rate of **10⁹ samples / second**, for all under-ice antennas
- ▶ did not find any monopoles

Best Limits on Monopole Flux so far

Detrixhe et al. [ANITA Collaboration], Phys.Rev. D83 (2011) 023513

D.P. Hogan et al. [RICE Collaboration] Phys.Rev. D78 (2008) 075031

Thank you
Questions?

Backup slides

ANITA-2 trigger details

- ▶ **Hierarchical ANITA-II trigger (L0 – L3)** allows relatively low neutrino detection trigger threshold, while maintaining \sim Hz thermal noise data rate written to disk
- ▶ In contrast to ANITA-I, **only signals from the VPol channel** of the dual-polarization horn antennas contribute to ANITA-II trigger
- ▶ Following antenna, signals routed through trigger path are tested for their spectral power in 4 frequency bands **200→350, 330→600, 630→1100 and 150→1240 MHz**
- ▶ Frequency-banded signals are then passed through a **tunnel-diode**, which integrates roughly **7-ns units of data** and provides a unipolar (negative) output pulse.
- ▶ **L0** required signal in 1 of 4 frequency bands $> 2.3\sigma_v$ where σ_v is the RMS of the typical tunnel-diode output voltage at this point
- ▶ **L1** required 2 of 3 frequency bands + full-band trigger within 10 ns window
- ▶ **L2** issued in 1 of 16 phi sectors when 2 of 3 antennas on or adjacent to that phi sector triggered within 10 ns of each other
- ▶ **L3** required 2 of 3 antenna rings (upper, lower, and nadir) to have an L2 trigger within 10 ns