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UHE-v OBSERVATIONS, AND A 100-YEAR
PHYSICS PROBLEM
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THE UHE COSMIC-RAYS (UHECR): PROTONS AND NUCLEI AT THE

HIGHEST ENERGIES
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Figure 1: CR energy spectrum [9] Figure 2: Figure 1, EeV scale [10]

Energies per nucleus span seven orders of magnitude.



GZK PROCESS, UHECR — UHE-v

The GZK Process describes UHE-v production when CR’s
interact with the Cosmic Microwave Background (CMB):

pt+vmg = n’+et +o4+v4v (1)

—|n® = pF e+ (2)

Pt +yemg = P+ 4+ (3)




UHECR AND THE GZK-CUTOFF
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Figure 3: The drop in flux at right is most likely caused by the GZK
effect [10].
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THE RACE FOR UHE-v
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Figure 4: Predicted UHE-v fluxes from UHECR flux at Earth [1].
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ANTARCTICA IS NOT THE VENUE, BUT THE
TARGET




WE NEED A BIG TARGET: EFFECTIVE VOLUME AND ICE PROPERTIES
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Figure 5: Concepts of effective volume, and attenuation length.
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ANTARCTIC ICE PROPERTIES
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Figure 6: The attenuation length versus depth at the South Pole [3].
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ANTARCTIC ICE PROPERTIES
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Figure 7: The attenuation length versus depth in Moore’s Bay [5].
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THE ASKARYAN EFFECT - NEGATIVE CHARGE IN CASCADE RADIATING
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Figure 8: As the cascade progresses, the negative charge excess
increases [8].



THE ASKARYAN EFFECT - FIRST OBSERVATION AT SLAC
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Figure 9: D.Saltzberg et al. observed the Askaryan Effect at SLAC [13].



THE ASKARYAN EFFECT - FIRST OBSERVATION AT SLAC
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Figure 10: An example of an Askaryan radio-frequency (RF) impulse
[11].



THE ASKARYAN EFFECT - OBSERVATION IN ICE AT SLAC

Figure 11: A second test at SLAC demonstrated the Askaryan effect in
ice [7].
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TWO EXPERIMENTS: ARA AND ARIANNA
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ANTARCTIC ROSS ICE SHELF ANTENNA NEUTRINO ARRAY (ARIAN NA)
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Figure 12: ARIANNA is deployed on the Ross Ice Shelf, using the
ocean as a reflective surface for Askaryan RF pulses.
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ASKARYAN RADIO ARRAY (ARA)
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Figure 13: ARA is deployed at the South Pole, taking advantage of

the clearest ice on the planet. ’



FROM IDEA TO ANALYSIS
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Figure 14: (Red) Contributions from undergraduates.
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MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING
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Figure 15: ARIANNA MC demonstrates the effect
of Moore’s Bay ice versus South Pole ice, and
the firn. Courtesy of C. Persichilli (UC Irvine).
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MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING
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Figure 16: The index of refraction versus depth.
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MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING
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Figure 17: Glaciological evidence for shadowing being reviewed.
Figure courtesy of Andrew Shultz, University of Nebraska (Physics).
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MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING
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Figure 18: Undergraduates have helped us track online the physics
modifications to the simulations: AraSimQC. Pictured: UHE-v with

different energies for the same detector. )8



MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING

Figure 19: (Top row, left to right) Kaeli Hughes, Jude Rajasekara,
Hannah Hasan. (Bottom row, left to right) Jorge Espinosa, Chris
Persichilli.
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MONTE-CARLO SIMULATIONS AND MACHINE-LEARNING

Figure 20: Computing in High-Energy Physics Research (CHEAPR)
2016. Workshop devoted to exploring how machine-learning can
improve our Askaryan signal recognition
http://ccapp.osu.edu/workshops/CHEAPR2016/workshop.html.
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SYSTEMS INTEGRATION - OHIO STATE UNIVERSITY
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Figure 21: Undergraduates and graduate students are responsible
for ARA systems integration at Ohio State.
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SYSTEMS INTEGRATION - OHIO STATE UNIVERSITY

Figure 22: ARA-4 during systems integration.
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SYSTEMS INTEGRATION - OHIO STATE UNIVERSITY
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Figure 23: The general design of the ARA stations [2].
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SYSTEMS INTEGRATION - OHIO STATE UNIVERSITY

4
O South
Testbed IceCube O Pole @ Deployed ARA
® = Station
3 1 South Pole
Station Instrumentation
O deployment in 17 / 18.
WT3 Site / road preparation
50 2 in 16 /17. prep
6 ;’t! Skiway @ Potential if support
. %km is available

Figure 24: Planned ARA deployment for 2017 Antarctic season.

34



SYSTEMS INTEGRATION - OHIO STATE UNIVERSITY

Figure 25: (Left to Right) Patrick Allison, Oindree Banerjee, Brian
Clark

Not pictured: Mike Kovacevish, Lucas Smith, Suren Gourapura
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SYSTEMS INTEGRATION - UNIVERSITY OF CALIFORNIA AT IRVINE
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Figure 26: The general design of the ARIANNA systems [6].
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SYSTEMS INTEGRATION - UNIVERSITY OF CALIFORNIA AT IRVINE
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Figure 27: The ARIANNA data acquisition system triggers and
digitizes simultaneously the analogue waveforms [6].
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SYSTEMS INTEGRATION - UNIVERSITY OF CALIFORNIA AT IRVINE
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Figure 28: ARIANNA prototype: Hexagonal Radio Array (HRA) [4].
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DEPLOYMENT




DEPLOYING THE HRA

Figure 29: (Top, left): UCI, crating. (Top, right): UCI shipping. (Bottom,
left): Port Hueneme. (Bottom,right): Christchurch, New Zealand 40



DEPLOYING THE HRA
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Figure 30: The HRA is located in Moore’s Bay [5]. y



DEPLOYING THE HRA

Figure 31: (Top): McMurdo Station, Ross Island. (Bottom): Moore's
Bay, Ross Ice Shelf
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DEPLOYING ARA2
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Figure 32: Continuing another 850 miles south to deploy ARA2.
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FILM OF ARIANNA DEPLOYMENT - YEAR 2




RESULTS FROM ARA2 AND THE HRA




UHE-v RESULTS FROM THE HRA
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Figure 33: Latest upper-limit on the UHE-v flux from HRA. Figure
courtesy of C. Persichilli, ARA2 Result: [2].



BONUS: HRA DETECTION OF UHECR




ARIANNA HRA - DETECTION OF UHECR
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Figure 34: Building a signal template for UHECR [4].
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ARIANNA HRA - DETECTION OF UHECR (38 HITS)
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Figure 35: Using signal templates to distinguish signal from
backgrounds [4].
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ARIANNA HRA - DETECTION OF UHECR
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Figure 36: One event hit five stations [4]!
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ARIANNA HRA - DETECTION OF UHECR
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Figure 37: Detection of 38 events leads to a flux measurement, with
(Ep) = 0.65775 EeV, J(E) = 11759 x 107"¢ eV=" km=2 sr=" [4].
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BONUS: ARA DETECTION OF SOLAR
FLARES




INSTITUTIONS INVOLVED IN ARA/ARIANNA
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Figure 38: Courtesy of Brian Clark (OSU).
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INSTITUTIONS INVOLVED IN ARA/ARIANNA
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Figure 39: Participating institutions in California.
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UHE-v RESULTS FROM ARA2




UHE-v RESULTS FROM ARA2
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Figure 40: Latest upper-limit on the UHE-v flux from ARA2 [2].
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UHE-v RESULTS FROM ARA2
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Figure 41: Effective area for the ARA2 limit [2].
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UHECR OBSERVATION WITH HRA




UHECR OBSERVATION WITH HRA

Period Settings
December 6" — January 4" Trigger 2/2 upward channels, no L1, threshold: 70 mV
January 4" — January 2274 Trigger 2/2 downward channels, no L1, threshold: 70mV

January 22"¢ — February 26" Trigger 2/2 upward channels, L1 on, threshold: 70mV
February 26" — March 274 Trigger 2/2 upward channels, L1 on, threshold: 72mV
March 2°¢ — March 12" Trigger 2/2 upward channels, L1 on, threshold: 74mV
March 12%® — March 140 Trigger 2/2 upward channels, L1 on, thresholds: 82 mV
March 12" — April 237 Trigger 2/2 upward channels, L1 on, thresholds: 8 mV
Description Number of events Fraction Note

All data 653,447 100%

After L1 578,745 88% On station level: 756%

Option 1:

After cluster cut 538,198 82% Live-time loss: 6.6%

Events above 150mV 92 0.01% Unclear contamination with noise
Option 2:

Cut on correlation 38 0.005% > 98% analysis efficiency, 100% live-time

Figure 42: Tables from UHECR observation work [5].
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THE ASKARYAN EFFECT




THE ASKARYAN EFFECT - CONCEPTUAL UNDERSTANDING
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Figure 43: In a UHE cascade, the number of particles increases until
the critical energy is reached (Nmay). Medium begins to stop particles
after cascade maximum [8] [12].
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THE ASKARYAN EFFECT - CONCEPTUAL UNDERSTANDING
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Figure 44: A diagram of the cascade coordinates, and observer
coordinates.
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THE ASKARYAN EFFECT - CONCEPTUAL UNDERSTANDING
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Figure 45: The Askaryan pulse at 1 EeV. (Upper left): R = 1000 m, no
form factor. (Upper right): R = 1000, with form factor. (Lower left):
R = 250 m, no form factor. (Lower right): R = 250 m, with form factor.



THE ASKARYAN EFFECT - CONCEPTUAL UNDERSTANDING
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Figure 46: The lateral distribution of charge density for an
electromagnetic cascade, at two times after the primary interaction.
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Table 3. Summary of dielectric parameters. The first column is the
frequency, v, followed by the attenuation lengths, which are
uncorrected ((Lg}) and corrected (1)) for R = 0.82 + 0.07. The
fourth column is {1} expressed in dBkm~'. The imaginary part of
the dielectric constant, ¢”, is shown in the fifth column. The final
column shows wtané (GHz). The typical error on the quantity
vtand is 0.2 x 107*

v {Lo} () (L) ¢ x10*  vtané x 10°
GHz m m dBkm~! GHz
0.100 432 449 19.3 3.8 1.2
0.175 467 487 17.8 2.0 1.1
0.250 457 476 18.2 1.4 1.1
0.325 422 438 19.8 1.2 1.2
0.400 408 423 20.5 1.0 1.3
0.475 366 378 23.0 0.95 1.4
0.550 349 360 24.1 0.86 1.5
0.625 363 375 23.2 0.72 1.4
0.700 331 341 25.5 0.71 1.6
0.775 310 319 27. 0.69 1.7
0.850 320 329 26.4 0.61 1.6
Ave, 38016 400£18 22+1 1.3+£03 1.37 £0.06
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Figure 47: The reflection coefficient in Moore's Bay.
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