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uhe-ν observations, and a 100-year
physics problem
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the uhe cosmic-rays (uhecr): protons and nuclei at the
highest energies

Figure 1: CR energy spectrum [9] Figure 2: Figure 1, EeV scale [10]

Energies per nucleus span seven orders of magnitude.
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gzk process, uhecr → uhe-ν

The GZK Process describes UHE-ν production when CR’s
interact with the Cosmic Microwave Background (CMB):

p+ + γCMB → n0 + e+ + ν̄ + ν + ν (1)

→ n0 → p+ + e− + ν̄ (2)

p+ + γCMB → p+ + γ + γ (3)
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uhecr and the gzk-cutoff

Figure 3: The drop in flux at right is most likely caused by the GZK
effect [10].

10



the race for uhe-ν

Figure 4: Predicted UHE-ν fluxes from UHECR flux at Earth [1].
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antarctica is not the venue, but the
target



we need a big target: effective volume and ice properties
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Figure 5: Concepts of effective volume, and attenuation length.
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antarctic ice properties

Figure 6: The attenuation length versus depth at the South Pole [3].

14



antarctic ice properties

Figure 7: The attenuation length versus depth in Moore’s Bay [5].
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the askaryan effect - negative charge in cascade radiating

Figure 8: As the cascade progresses, the negative charge excess
increases [8].

16



the askaryan effect - first observation at slac

Figure 9: D. Saltzberg et al. observed the Askaryan Effect at SLAC [13].
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the askaryan effect - first observation at slac

Figure 10: An example of an Askaryan radio-frequency (RF) impulse
[11].
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the askaryan effect - observation in ice at slac

Figure 11: A second test at SLAC demonstrated the Askaryan effect in
ice [7].
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two experiments: ara and arianna





antarctic ross ice shelf antenna neutrino array (arianna)

Figure 12: ARIANNA is deployed on the Ross Ice Shelf, using the
ocean as a reflective surface for Askaryan RF pulses.
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askaryan radio array (ara)

Figure 13: ARA is deployed at the South Pole, taking advantage of
the clearest ice on the planet.
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from idea to analysis
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Figure 14: (Red) Contributions from undergraduates.
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monte-carlo simulations and machine-learning

Figure 15: ARIANNA MC demonstrates the effect
of Moore’s Bay ice versus South Pole ice, and
the firn. Courtesy of C. Persichilli (UC Irvine).

◦ Simulations
produce
VeffΩ(E)

◦ Activating
various effects
shows relative
importance

◦ Example:
South Pole vs.
Moore’s Bay,
firn
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monte-carlo simulations and machine-learning
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Figure 16: The index of refraction versus depth.

◦ Activating
various effects
shows relative
importance

◦ The firn
causes light
rays to bend

◦ We require a
solution to
exist between
cascade and
station
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monte-carlo simulations and machine-learning

Figure 17: Glaciological evidence for shadowing being reviewed.
Figure courtesy of Andrew Shultz, University of Nebraska (Physics).
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monte-carlo simulations and machine-learning

Figure 18: Undergraduates have helped us track online the physics
modifications to the simulations: AraSimQC. Pictured: UHE-ν with
different energies for the same detector. 28



monte-carlo simulations and machine-learning

Figure 19: (Top row, left to right) Kaeli Hughes, Jude Rajasekara,
Hannah Hasan. (Bottom row, left to right) Jorge Espinosa, Chris
Persichilli.
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monte-carlo simulations and machine-learning

Figure 20: Computing in High-Energy Physics Research (CHEAPR)
2016. Workshop devoted to exploring how machine-learning can
improve our Askaryan signal recognition
http://ccapp.osu.edu/workshops/CHEAPR2016/workshop.html.
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systems integration - ohio state university

Figure 21: Undergraduates and graduate students are responsible
for ARA systems integration at Ohio State.
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systems integration - ohio state university

Figure 22: ARA-4 during systems integration.
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systems integration - ohio state university

Figure 23: The general design of the ARA stations [2].
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systems integration - ohio state university

Figure 24: Planned ARA deployment for 2017 Antarctic season.
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systems integration - ohio state university

Figure 25: (Left to Right) Patrick Allison, Oindree Banerjee, Brian
Clark

Not pictured: Mike Kovacevish, Lucas Smith, Suren Gourapura
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systems integration - university of california at irvine

Figure 26: The general design of the ARIANNA systems [6].
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systems integration - university of california at irvine

Figure 27: The ARIANNA data acquisition system triggers and
digitizes simultaneously the analogue waveforms [6].
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systems integration - university of california at irvine

Figure 28: ARIANNA prototype: Hexagonal Radio Array (HRA) [4].
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deployment



deploying the hra

Figure 29: (Top, left): UCI, crating. (Top, right): UCI shipping. (Bottom,
left): Port Hueneme. (Bottom,right): Christchurch, New Zealand 40



deploying the hra

Figure 30: The HRA is located in Moore’s Bay [5].
41



deploying the hra

Figure 31: (Top): McMurdo Station, Ross Island. (Bottom): Moore’s
Bay, Ross Ice Shelf
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deploying ara2

Figure 32: Continuing another 850 miles south to deploy ARA2.
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film of arianna deployment - year 2



results from ara2 and the hra



uhe-ν results from the hra

Figure 33: Latest upper-limit on the UHE-ν flux from HRA. Figure
courtesy of C. Persichilli, ARA2 Result: [2].
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bonus: hra detection of uhecr



arianna hra - detection of uhecr

Figure 34: Building a signal template for UHECR [4].
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arianna hra - detection of uhecr (38 hits)

Figure 35: Using signal templates to distinguish signal from
backgrounds [4].
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arianna hra - detection of uhecr

Figure 36: One event hit five stations [4]!
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arianna hra - detection of uhecr

Figure 37: Detection of 38 events leads to a flux measurement, with
⟨Ep⟩ = 0.65+1.2

−1.0 EeV, J(E) = 1.1+1.0
−0.7 × 10−16 eV−1 km−2 sr−1 [4].
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bonus: ara detection of solar
flares



institutions involved in ara/arianna

Figure 38: Courtesy of Brian Clark (OSU).
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institutions involved in ara/arianna

UHE-nu Locations (California)

Locations

Cal-Poly Univ.

UC Irvine
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Stanford Linear Accelerator

Figure 39: Participating institutions in California.
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uhe-ν results from ara2



uhe-ν results from ara2

Figure 40: Latest upper-limit on the UHE-ν flux from ARA2 [2].
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uhe-ν results from ara2

Figure 41: Effective area for the ARA2 limit [2].
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uhecr observation with hra



uhecr observation with hra

Figure 42: Tables from UHECR observation work [5].
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the askaryan effect



the askaryan effect - conceptual understanding
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Figure 43: In a UHE cascade, the number of particles increases until
the critical energy is reached (nmax). Medium begins to stop particles
after cascade maximum [8] [12].
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the askaryan effect - conceptual understanding

Figure 44: A diagram of the cascade coordinates, and observer
coordinates.
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the askaryan effect - conceptual understanding

Figure 45: The Askaryan pulse at 1 EeV. (Upper left): R = 1000 m, no
form factor. (Upper right): R = 1000, with form factor. (Lower left):
R = 250 m, no form factor. (Lower right): R = 250 m, with form factor.
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the askaryan effect - conceptual understanding

Figure 46: The lateral distribution of charge density for an
electromagnetic cascade, at two times after the primary interaction.
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glaciological parameters



glaciological parameters
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glaciological parameters

Figure 47: The reflection coefficient in Moore’s Bay.
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