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Abstract

The Askaryan effect describes coherent electromagnetic radiation from high-energy cascades in
dense media with a collective charge. We present an analytic model of Askaryan radiation that
accounts simultaneously for the three-dimensional form factor of the cascade, and the Landau-
Pomeranchuk-Migdal effect. These calculations, and the associated open-source code, allow the
user to avoid computationally intensive Monte Carlo cascade simulations. Searches for cosmogenic
neutrinos in Askaryan-based detectors will benefit from computational speed, because scans of
geometric parameter space are required to match neutrino signals. The Askaryan field is derived
from cascade equations verified with Geant4 simulations, and compared with prior numerical and
semi-analytic calculations. Finally, instructive cases of the model are transformed from the Fourier
domain to the time-domain. Next-generation in situ detectors like ARA and ARTANNA can use
analytic time-domain signal models to search for phase correlations with event candidates.
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1. Introduction

The landmark observation of PeV neutrino interactions in Antarctic ice by the IceCube col-

laboration [I] has highlighted the urgency for progress in ultra-high energy cosmogenic neutrino
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(UHE-v) searches, at energies 106 — 10%° eV [2] [3] [4]. Cosmogenic neutrinos represent a long
awaited prize in both astrophysics and particle physics, because of their potential to explain the
origin of UHE cosmic rays (UHECR), as well as the chance to study electroweak interactions at
record-breaking energies.

The GZK process is an example of a py interaction yielding UHE-v production from the cosmic
ray flux on the cosmic microwave background [5] [6]. Most UHECR flux models lead to the conclu-
sion that 100 km3-volume detectors are required to measure the UHE-v flux [7] [§] [9] [10]. UHE-v
also present the possibility revealing physics beyond the Standard Model, via measurements of
UHE-v deep-inelastic scattering cross-sections [I1] [I2]. Models matching simultaneously the PeV
flux from IceCube, the diffuse GeV gamma-ray flux, and the UHECR flux, are now understood to
constrain the UHE-v flux [13] [9] [14].

A new generation of detectors for UHE-v is based on the Askaryan effect, in which a UHE-v inter-
action produces a cascade that radiates radio-frequency pulses from within a dielectric medium [I5]
[16] [I7]. This growing class of experiments uses the special radio-frequency properties of Antarc-
tic ice, in order to search for UHE-v cascades efficiently [I8] [19] [20]. The Radio Ice Cernekov
Experiment (RICE) conducted the pioneering search [2I]. The Antarctic Impulsive Transient An-
tenna (ANITA) is a balloon-borne detector [22] [23]. The Askaryan Radio Array (ARA), and the
Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) are two in situ detectors similar to
RICE, but designed on a much larger scale [24] [25] [26] [27] [28]. The ExaVolt Antenna (EVA)
is a proposed design to improve on the ANITA detection scheme, using the balloon itself as the
antenna [29].

The Askaryan signal expected in each of these experiments must be understood in detail. Zas,
Halzen, and Stanev (ZHS) created a Monte Carlo simulation which calculated the electric field by
tracking the radiation from every cascade particle, using the Fraunhofer approximation [30]. This
technique is computationally expensive, and cannot be scaled to UHE-v energies. Semi-analytic
models [31] [32] by J. Alvarez-Muniz, A. Romero-Wolf, R.A. Vazquez, and E. Zas (ARVZ) solve
Maxwell’s equations, treating the cascade charge excess as a source current. These models require
only the profile of the negative charge excess. Semi-classical methods become fully analytic when
the Greisen and Gaisser-Hillas calculations are used for the profile [33].

J. Ralston and R. Buniy (RB) [34] presented a fully analytic, complex analysis of Askaryan

radiation, expanding around the global maximum of the cascade profile. This approach yields



theoretical insight into observable properties of the field, while matching the form of the ZHS
particle-tracking Monte Carlo. The model includes an explanation of signal causality, and merges
coherence zones in a continuous fashion. A proper handling of non-far-field coherence zones is
vital for lowering energy thresholds in the in situ Askaryan detectors (ARA/ARIANNA), because
the lowest-energy events, by definition, are only detectable above thermal thresholds when the
neutrino vertex is in coherence zones other than the Fraunhofer zone. Lowering energy thresholds
is important for capturing more UHE-v signals, because the flux is expected to increase with
decreasing energy.

The RB work, however, may be generalized to cascades with realistic shape, from the cascade
form factor, from lateral charge diffusion, and cascade-elongation from the Landau-Pomeranchuk-
Migdal (LPM) effect. In this work, a model is presented that begins with RB, and include these two
major extensions. These two effects constrain the high-frequency Fourier modes and solid angle of
the radiation. The model is checked against Geant4 simulations at high energies (> 1 PeV) using a
pre-shower, sub-shower technique, performed on clusters at the Ohio Supercomputing Center. The
results are shown to follow the Greisen electromagnetic shower geometry [35]. Finally, the Askaryan
field is expressed in the time-domain under several scenarios, useful for digital signal processing and

cross-correlation in experiments like ARA and ARIANNA.

2. Units, Definitions, and Conventions

All calculations in this work have been encapsulated into an open-source C++ class, available
online E The primary function of this code is to predict the electric fields that Askaryan-based
detectors would detect. In all sections, this class will be called the associated code, or simply the
code.

The coordinate systems are shown in Fig. [Th. Observer coordinates are un-primed, and charge
excess coordinates are primed. The cascade current J(¢) is described in Sec. and will be called
the instantaneous charge distribution (ICD) in subsequent sections. The vectors p and p’ refer to
the lateral distance from the cascade axis, and z and 2’ refer to the cascade axis. The origin for both
systems is the location of the cascade maximum, with 2z’ = z = 0 and p = p’ = 0. The viewing angle

is 6. Bold variables, and variables with a circumflex, é;, refer to vectors. The observer distance is

Thttps://github.com/918particle/ AskaryanModule
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Figure 1: (a) Coordinate systems. Un-primed coordinates refer to the observer, and primed coordinates refer to
the reference frame of the vector current. (b) The curves represent the total charge content, with the instantaneous

charge density (ICD) shown by the internal curves, versus depth after the first interaction in the medium. The solid

014

curves were made for shower energy 1 eV and the dashed curves for a shower profile having been stretched by

either the LPM effect, or simply by going to a higher energy. The Greisen model was used for the form of the cascade

profile. The nmax parameter will refer to the negative charge excess.

R = |x — X/|, w refers to the angular frequency, and k = (27)/nA and q = n(wR,wp)/(cR) refer to
one- and three-dimensional wavevectors in the dielectric, with a refractive index n. Although the
code takes n = 1.78 as a default value, it may be altered to apply to other uniform media. The
Cherenkov angle is defined by the index of refraction: cosf¢ = 1/n. The index of refraction at RF
frequencies for bulk ice in Antarctica is 1.783 4+ 0.003 [36].

The archetypal cascade profile is shown in Fig. [Tp, in which the total number of cascade particles
is shown, versus depth along the 2’ axis. The depth is Pz’, where P is the bulk density of ice (0.917
g/cm?). The parameter np., will refer to the number of negatively charged particles (typically
~ 20% of the total - see Sec. and the Appendix Sec. for details). The parameter a
is the Gaussian width of the cascade profile near cascade maximum. The cascade is initiated by
an electroweak neutrino interaction, where the neutrino energy is F,, and the total energy of the
cascade is Ec.

The units of the electromagnetic field in the Fourier domain are V/m/Hz, often converted in the
literature to V/m/MHz. To make the distance-dependence explicit, both sides of field equations
are multiplied by R, making the units V/Hz. In Sec. |4} the field normalization constant is Fy, and
it contains the energy-dependence. Ey may be linearly scaled with energy, provided the parameters
a and Ny, are derived consistently from the Greisen model. Equations in Sec. (] are proportional

to wEy, so the units of Ey are V/Hz?.



In the original RB work, the following convention for the Fourier transform G(w) of a function

g(t) was used:

Gw) = /OO e“tg(t)dt (1)
o) =5 [ G @)

2 J_ o
The sign convention shown in the exponent is used in RB, though the opposite sign convention is
more common in mathematical physics. The definitions in Eqgs. have been kept for consistency
with Sec. V of [34]. The sign convention may be toggled in the code, but the output does not depend
on this choice, because the appropriate transformation in time is applied. All frequencies are shown
in MHz in spectral plots, for comparison to the literature. The symbol ~ above a function denotes
a Fourier domain quantity. In Secs. 3.2] and [3:4] the three-dimensional Fourier transform is used to

describe the form factor in three-dimensional frequency-space, with the normal sign convention:
Fla) = [ a e 3

3. Combination of the RB model, the LPM Effect, and the Cascade Form Factor

In Sec. the RB model [30] is presented for clarity, beginning with all assumptions made.
Next, the model is enhanced by treating two new effects: the LPM effect (Sec. and the cascade

form factor, F (Sec. .

3.1. General Assumptions, and the Basic RB Model

The conventions are taken from Sec. [2| to build the RB model [34]. RB derive the Askaryan
fields from Maxwell’s equations in the Lorentz gauge for a dielectric medium, by expanding with
a special scalar parameter 7. The source current, J(¢',x’), is described by an ICD f(z' — vt, p'),

excess charge profile n(z’), and cascade speed v:

3(t', %) = va()f( — ot, p) (1)
2
n= (A20h> = %(asin@)2 (5)



The function f (2’ —wvt, p') is the ICD and the Fourier transform of f(z'—uvt, o) is F(w). Equation
is the squared ratio of a, and Az, the longitudinal range where the Askaryan radiation must
be coherent. To understand Azcop, consider Feyman’s formula [30]. Radiation from an accelerating
point charge is proportional to the angular acceleration 6 relative to the observer. The coherence
regime is defined by |2'| < Azcon, where 0 and R(z' ) are constant in time to first order, and 0 is
maximized. RB show that if R(z’) < A in this limit, Azeon < 1/ R/(ksin? ).

The dominant Askaryan radiation arises from the portion of the shower profile satisfying |2'| <
Azeon. In either the Fresnel or Fraunhofer regimes, n < 1, but the RB model is not restricted to
1 < 1. The calculations should be valid for any 7 value, rather than the pure far-field approximation
(n—0,and kR> 1, R>> a). If a < Azon, then the fields have spherical symmetry and the limit
kR > 1 corresponds to the Fraunhofer approximation. Conversely, if a > Az, then n — oo, the
fields have cylindrical symmetry, and kR > 1 corresponds to the Fresnel limit.

The longitudinal cascade width a, and therefore 7, is derived in the code from either the Greisen
or Gaisser-Hillas cascade profile functions (Secs. , and can be modified by the LPM effect.
The Greisen function represents electromagnetic cascades, and the Gaisser-Hillas hadronic cascades.
The associated code requires the type of cascade profile as an input, and whether the LPM effect
must be applied.

3.2. The RB Field Equations

RB insert the vector current J(¢', x") into Maxwell’s equations, and solve for the vector potential:

ik|x—x|

cA(x') = /d3x’e dt'e™t I (', x') (6)

=]
RB then define R(z') = \/(z — 2/)% + p?), and expand around p' = 0:

) /2
pr L p )
R(z')  2R(2')
In Eq. [7} the third term on the right-hand side is dropped, because p’ < R(z’). The vector

Ix —x'| ~ R(2) —

potential in Eq. @is then factored into the form factor F(w) and a vector function. F(w) is the
three-dimensional Fourier transform of the ICD, and the vector is governed by n(z'). Thus, F(w)
describes the charge distribution, and the vector portion describes the charge evolution. Equations
summarize the result. In Egs. AFF ig the vector potential, named the Fresnel-Fraunhofer
(FF) potential in RB.



Aw,0) = ATF (w,0) / dPz'emi 9% f(x') (8)
A(w,0) = F(w,0)A"F (w,0) (9)

Equations express the general RB result for the electric field E = —9A /0t, in terms of

the frequency v, viewing angle 6, and n:

RE(v,0,n) 7 @ Mmax  V  x
— =252 x 107" — F E 10
[ ] <072 rooo] ey T @Y (10)
Y = —ie*Fging (11)
B cosbc —cosf . . cosOc cosl —cosbc\ .
£ =W o) (U ek wino) (1- Dm0 g,

. . cosf cosb — cosfO¢ —1/2 1 5c086 — cosfc
=(1—in(1- = 7o 1
W(n,0) ( in ( 3in 20 1 )) exp ( —3 (ka) - (13)

Equation [10]is the total field, with a overall phase factor defined in Eq. Equation [12|contains
the vector structure, and Eq. governs the phase and angular structure.

3.3. The Landau-Pomeranchuk-Migdal (LPM) Effect

The Landau-Pomeranchuk-Migdal effect, or LPM effect, suppress the pair-creation and bremsstrahlung
cross-sections at cascade energies above a material-dependent constant known as the LPM energy

or ELPM [37}

(mc?)2aX,

e = 7.7 TeV/em - Xo (14)

Erpm =

In Eq. m is the electron mass, « is the fine-structure constant, and X is the radiation
distance (EpLpy = 0.303 PeV for ice). If the particle energy is greater than Erpy, the quantum
mechanical formation length of typical bremsstrahlung and pair-production interactions is longer
than atomic separations, leading to quantum interference that suppresses cross-sections. The result
is a longitudinal shower elongation, from the non-interacting, higher-energy particles. The LPM
effect is reviewed by S.R. Klein in Ref. [37], and Ref. [38] explains how LPM physics may be added
to the ZHS MC approach.



The LPM changes how the RB model must be applied. Under normal circumstances, the
quantity nmaxa approximates the area under the cascade profile, or the total number of cascade
particles. RB note that, for particles with energy greater than some critical energy F ., a
\/m and Npmax X (EC/ECm)/\/ln(Ec/ECm —0.33), 80 Nmax@ x E¢, for the Greisen
cascade parameterization. It is shown in Ref. [39] that in the LPM-regime, a o \/Ec/Eci;. While

it may appear that changing the energy scaling of a violates energy conservation through the field
normalization n,.xa, this is not the case.

First, the amount of radiated energy does not have to correspond to the cascade energy, if the
shape of the cascade is modified. The Frank-Tamm formula for a uniform charge moving at a finite
track [34] shows that the radiated goes like d>P/dQdw o L?, for track-length L. The LPM effect
elongates L, so a relative increase in the radiated energy should be expected, provided the track
is within Azcon. It is shown in Sec. [] that enhancements due to cascade elongation are limited
by a coherence frequency, the cascade form factor, or both. Also, there is additional limitation
in radiated power through the reduction of the angular width of the Cherenkov cone under the
influence of the LPM effect (see Appendix Sec. [7.2)).

Second, there is no reduction in ny.x that corresponds to the relative increase in a. Figures
12 and 13 of Ref. [40] demonstrate that the electromagnetic cascades elongate while accounting
for the LPM effect, but that the dependence of n,.x on the shower energy is not reduced. Figure
12 of Ref. [0] shows that the cascade maximum location grows and fluctuates more strongly at
energies above Eppy. However, Fig. 13 of Ref. [40] shows that the energy dependence of nmax
stays approximately the same, and ny,.x fluctuates mildly for E¢ in the GZK primary energy range.
Physically, all cascade particle energies must eventually decrease to below Eppy in a cascade. By
definition, this must take place before the cascade maximum, so to first order ny.x is actually
governed by standard cascade physics, even when FEc > Eppy initially.

S.R. Klein notes in Ref. [37] that the LPM effect may influence the form factor, F(w). F(w) is
controlled by the lateral ICD, from multiple scattering (MSC) effects that lead to a mean scattering
angle (Oysc) for cascade particles incident on atoms in the medium [37] [35]. (Omsc) takes the

following form for a particle of energy E:

usch = 2\ [ L (19

Xy is the radiation length in units of distance, and d is the distance over which the scattering



occurs, and Fy is the Moliere scattering energy, where Ey = mc2\/ém ~ 21.2 MeV. The LPM
effect increases d relative to Xy, increasing (fprsc). Although (fysc) is enhanced by the LPM effect,
it is also inversely proportional to energy. This implies that the inevitable pile-up of particles with
energy F..iy = Es actually governs the ICD width, at a point in the cascade when the LPM effect
is no longer important.

Finally, a remark about “shower fluctuations” is prudent. First, while the LPM effect may cause
the depth of the cascade maximum to fluctuate (see Fig. 12 of Ref. [40]), the location of cascade
maximum is irrelevant for Askaryan radiation, just as any radiation field is independent of the origin
of the coordinate system. The origin in the associated code is the location of cascade maximum,
wherever it occurs. Much harder to model is the effect of the multi-peaked cascade profile typical of
LPM-induced fluctuations. This can lead to a reduction in the Cherenkov cone-width, and further
modified by the elongated tail of the cascade profile [4I]. However, it is shown in Ref. [42] that
the sub-peaks only alter the waveform in limited circumstances, such as being off-cone by ~ 10°,
and in the Fraunhofer regime. The waveforms in Ref. [42] all contain the basic bi-polar structure
produced by the associated code, despite the multi-peaked cascade profile.

In summary, the main effect LPM physics has on Askaryan radiation is the filtering via the
elongation of the cascade profile. The associated code quantifies this by elongating the shower
width a, using calculations by Klein and Gerhardt shown in Fig. [2 [39]. In scenarios where LPM is
unimportant (initial hadronic-dominated processes [41], cascades with Ec < Erpm), the associated
code draws the width and height of the negative charge excess profile from the usual Greisen and

Gaisser-Hillas formulations [35] [43].

8.4. The Cascade Form Factor, F

The factorization of the longitudinal charge excess evolution, AFF (w, @), and the instantaneous
properties of the lateral charge distribution, F (w), leads to the interpretation of F (w) as a filter.
Filters are fully described by pole-zero diagrams, which display the Laplace transform of the filter
transfer function. Impulsive E-fields with no DC-component automatically approach 0 as |w| — 0,
meaning F should not require any zeros. Thus, F (w) should be completely defined by poles in the
complex w-plane.

D. Garcia-Fernandez et. al. (Ref. [44]) show that the integrals over individual tracks in the ZHS

algorithm can be generalized to all coherence regimes, when integrated numerically. The authors
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Figure 2: The length of the neutrino-induced cascade, including the LPM effect, from ref. [39].

of Ref. [44] then insert the form factor chosen in Ref. [45] into the RB framework to demonstrate
agreement (Fig. 7 of Ref. [44]). This agreement occurs at frequencies below 120 MHz, below the
bandwidths of ARA/ARIANNA. The lateral p’-dependence of the chosen form factor is gaussian
(f o exp(—p'?)), yielding gaussian behavior in the Fourier domain (|F| o exp(—w?)). Geant4
simulations and the Greisen model show that f(x’) is not gaussian (Sec. and Appendix Sec.
. Additionally, the ultra-violet divergence in Ref. [44] is attributed to the assumption that the
dielectric constant e(w) is not absorptive, however, the effect of F (w) is apparent in that model
near 1 GHz. This is because the filtering effect of ﬁ(w, 0) occurs when the Askaryan radiation of
all finite tracks in a cascade are summed.

The ZHS form factor, Fyus (w), is constructed of poles which imply that the lateral ICD f
exp(—p’). The key result for F(w) is given in Eq. in terms of the viewing angle 0, the angular
frequency w, and (v/2mpg)~!, the distance from the cascade axis (p’ = 0) at which the negative

charge excess has decreased by 1/e.

1

(1 (ce))

Intuitively, the squared ratio in the denominator of Eq. compares the lateral projection of

F(w,0) = (16)

the wavevector with the physical extent of the charge excess. If the charge excess is laterally large,

compared to the wavelength, then Eq. [I6] begins to act as a low-pass filter. By substituting Eq.

10



ito Eq. the RB model is completed, properly accounting for LPM elongation and the ICD.
The form factor F(w,0) is derived from fits to Geant4 cascades, for Eq = 1 — 100 PeV. Once the
quality of these fits is established, one may proceed with the theoretical cascade models, with no

need of further numerical simulation.

8.4.1. The Greisen Model
K. Greisen provided a comprehensive review of the longitudinal charge evolution, and lateral
distribution, within electromagnetic cascades [35], by combining earlier work by Moliére, Nishimura

and Kamata, Landau, and others. The integrated charge at depth 2y in the medium is

ot (20) = m(;j’}Et) exp {ZO <1 - ‘;’m(s)) } (17)

In Eq. 2p is in units of radiation length (36.08 g cm~2), and the cascade energy Ec in units
of GeV (E.iy = 73 MeV) [30, B3]. The shower age is s = 3z0/(z0 + 2In(E¢/Eeit)). Equation
is most accurate near shower maximum: zmax = In(Fc/Eeit). K. Greisen showed that (Innge) ~
0.7(s =1 —31Ins). When s =1 at zmax, {Inng) = 0, implying negligible fluctuation in npyay. It
may be shown that a o \/Zmax [34]. FOr nmax = Mot (#max), Mmax@ < Ec/Eqic. The factor nyaxa
approximates the area under the peak of Eq. and is proportional to E¢ for Ec < Erpym. The
scaling becomes steeper under the influence of the LPM effect (Fig. . The cascade lives longer,
so a higher fraction of E¢ is radiated rather than deposited in the ice.

The lateral ICD arises from multi-scattering effects (MSC processes in Geant4), with average
scattering angle (fmsc) (Eq. [15), and a Moliere radius defined by p1 = Ewvsc/Ee, in radiation
lengths. Large errors arise for angles 0 > (Oysc), or (p’ > p1), but few particles have p’ > p;. The

(Omsc) is expressed in Eq. for particles of energy € in electromagnetic cascades [37]:

Fasc mec?\/4mzg /o 21.2 [MeV
(Buisc) = 25 g = MevAT/  ALENY] o (13)
Equation implies the lateral ICD should be widest near np,x, where the average particle
energy is minimized. The lag in 2’ of most particles with respect to the cascade front is O(1 — 10)
cm at Nyax. This lag is described in Eq. 13 of [37], assuming that particles at p’ have equal s.

Nishimura and Kamata refine the approximation, provide the lateral charged particle density, D,

11



and the result is known as the NKG-function, shown in Eq.

R (4.5 — 7\ S—2 7\ s—4.5
p— o 1055 (”) <1 + p) (19)
2npi T(s)I'(4.5 — 2s) \ p1 p1
Numerical results in the Appendix Sec. show that this work agrees with Eqs. and
the ICD is assigned a three-dimensional function f(x’). In Sec. F(w) is derived analytically

from f(x’). For details on the ICD, f(x’), see the Appendix Sec. Other efforts to model the
ICD and the resulting Askaryan radiation can be found in Refs. [406] [47, 48].

3.4.2. Analytic Formula for ﬁ(w, 0)
The definition of F(w, 6) is

F(q) = / daleiax f(x') (20)

The ICD f(x') is given by a general parameterization of the Greisen model:

F(X') = pgd(2') exp(—v2mpop) (21)

The choice of Eq. is motivated in the Appendix Sec. Recall that the ICD is meant to
describe the number density of the negative charge excess, not the total charged particle number
density. Geantd MC calculations and the Greisen model predict the exponential form, and the
ZHS parameterization suggests it in the Fourier domain. C.-Y. Hu et al chose a double-Gaussian
form [45], which is not accurate near p’ = 0, but highlights the relationship between theoretical
parameters and numerical fields. Note that the units of the 1/e width v/27py and §(2') are inverse
length, giving f(x’) units of number density.

Fitted results for the parameter v/27pg for times between 20-30 ns (s ~ 1) indicate that v/27pg ~
is constant with respect to cascade depth. The solution to Eq. is as follows: the trivial 2’
integration is performed, setting 2’ = 0 without loss of generality. Next, two convenient variables

are defined, and shown in Egs. [22] and

v = Y sing (22)
c
~y
= 23
°= Jarm (23)

12



The variable v is the lateral projection of the wavevector, and o is the product of v and the
lateral charge extent. The variable o compares the laterally-projected wavelength to the lateral

extent of cascade excess charge. In Sec. 0 = w/wcr, so that wer is the limiting frequency.

Substituting Eqgs. and [23[into Eq. ﬁ(w, 0) becomes

F(w,0) = p?)/ dp'p’ exp {—lp’} / dg/ exp {—ip'y cos(¢/)} (24)

0 o -7
From the cylindrical symmetry of f(x’), the ¢’ coordinate may be rotated. With ¢ — ¢’ —7/2,
the ¢’-integral becomes a Oth-order Bessel function. A similar result in Ref. [46] contains the Bessel
function in Eq. In Ref. [46], however, the lateral ICD is not evaluated analytically, but through
numeric integrals. After making the substitution v’ = 7p’, the remaining p’-integral may be found

in standard tables.

F(w,0) =02 /Ooo du/v’ exp {—Z/} Jo(u) (25)
1

F(w,0) = Ao

(26)

The result for F (w, 8) is shown in Eq. The Askaryan spectrum is attenuated like w=3 for
o > 1, for wavelengths much smaller than the lateral ICD. For o < 1, F(w,6) ~ (1 + (3/2)02)~".
Given the the location of complex poles for ¢ < 1, one might suspect problems with causality. It
is important to note, upon transforming the model to the time domain, including the LPM effect
and the effect of F(w, ), that the fields do not violate the causality criterion stated by RB [34].

Equation 16 in Ref. [3I] contains the Askaryan vector potential versus retarded time (%),
matched to MC at 6 = 0¢, with six numerical parameters, not counting the overall normalization.

This equation is restated as Eq. and the x; have unique values for ¢, > 0 and ¢, < 0.

RA(t,,0 ) . _
[\(/-S]C) = —Eysin(0c)éy (exp(—2|t:| /o) + (1 + z1[t:[)7"2) (27)

Equation fully describes the cascade shape, is analytic, and, when combined with AFF ,
produces fields that obey causality (see Sec. . Additionally, F only needs one MC constant:
V27mpy. Although the second term in Eq. accounts for the asymmetric MC vector potential in

an ad-hoc fashion, this asymmetry flows directly from Eq. (Sec. 7 and special cases of the x;

13



are derived. Rather than requiring six raw MC numbers, the associated code relies on Eq. and
one MC parameter (v2mpg).

3.4.3. Generalization of Eq.
In the Appendix Sec. the lateral distribution of excess charge near cascade maximum is
shown to follow Eq. for p’ < p1, where p; is the Molieére radius. To include the effect of charges

beyond a single Moli¢re radius, the following form for f(x’) may be taken:

N
f(x) =6(z") Z a; exp(—V2mpip') (28)

The normalization requirement for the ICD provides the following constraint on the 2N free

parameters:

EN: <a> — o (29)

= \p}
Note that the units of the a; parameters are the same as the normalization p3 in the single-

exponential case. Let a; and o; take the following definitions:

a; = aip} (30)
v
vV 2 i

With this definition, Eq. 26] may be generalized to arbitrary Moliere radii, taking the following

g; =

(31)

form:

N
ﬁ(wﬁ) = Z (]-_’_?W (32)

i
It is shown in Sec. that in the far-field limit, at § = ¢, the effect of extending the form
factor F to arbitrary Moliere radii is equivalent to adding a set of additional poles to the Askaryan
field in the complex w-plane. In the time domain, the Askaryan field picks up a series of exponential

terms corresponding to the added poles.
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8.5. Results of the Model: RB+LPM+ﬁ(w, 0)

The associated code output, including all effects, for éy - E(t) is shown in Fig. [3| with Ec = 1000
PeV. Figure contains contour graphs, in units of mV/m, versus the retarded time in nanoseconds,
and 6 in degrees. The quadratic grey dashed line on the contours is a causal requirement from RB,
showing how the arrival time (e.g. group delay) of the signal depends on 6. Phase delays t, about
the quadratic are allowed: t4 = —¢(w)/w. Phase delays are most prominent when F #1,0 # 0c,
and when the LPM effect is strong. See Appendix Sec. [7.2] for further detail.
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Figure 3: Contours of &y - E(t), for a cascade energy of 1000 PeV. (a) R=1000 m, lateral ICD width of 5 cm. (b)
R=1000 m, lateral ICD width of 10 cm. (c¢) R=200 m, lateral ICD width of 5 cm. (d) R=200 m, lateral ICD width
of 10 cm. The LPM effect has been taken into account. See text for details.

The fields are shown for R = 200 m and 1000 m, (v/27pp)~! = 5 cm and 10 cm in Fig. [3| The

causality requirement from RB leads to off-cone regions have a higher effective velocity. A larger
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R value leads to wider separation in arrival times, as these off-cone modes have longer to outpace
the other modes (earlier times correspond to more negative retarded times).

An enticing implication of the effective velocity variation is that the degeneracy between a low-
energy event interacting close to the observer, and a high-energy event interacting correspondingly
farther from the observer would be broken. Recall that E oc R~1 in the far-field. An event with
R =100 m and Ec = 10 PeV would have the same amplitude as an event with R = 1000 m and
Ec = 100 PeV, neglecting secondary effects like ice absorption. The temporal signature shown by
the quadratics in Fig. [3| would be different in the two cases.

From Eq. the field E has both é; and éy components. For the extreme Fraunhofer limit, as

n — 0, the ratio of the amplitudes of these components is independent of frequency:

ép-E
Equation [33| shows that the é.-component of E(t) is positive above the Cherenkov angle, and

(33)

é-E . (COSH — cos@c>
sin 6
negative below it. Since the é, - E(t) = 0 at ¢, the maximum in the é.-component is always at
some angle 6 # 0c. The contour graphs of Fig. [ represent the é,-component of the same fields
as Fig. Because é, - E < ép - E, the Askaryan field is usually given with a pure éy-polarization.
Though the é,-component is small compared to the ég-component, the code does not neglect it.

The polarization ratio (Eq. is both complex, and frequency-dependent if n # 0.

4. Time-Domain Properties at the Cherenkov Angle

The analytic RB+LPM+F(w, #) model is derived in the time-domain for limiting cases, and
parameters from the semi-analytic treatment in Ref. [3I] are derived analytically. The authors of
[46] provide a similar formula for F (w), but resort to MC techniques to fit that formula to MC
results. The authors of [45] made the wrong choice for the form of the ICD (see Sec. [3.4.2).

Two cases are considered: F = 1, followed by ﬁ(w, 0) # 1. The limiting frequency of the former,
wg, is governed by coherence. The latter has two limiting frequencies, wc and wcr, which leads
to an asymmetry in the vector potential, and therefore, asymmetry in E. The SI units of terms
like RE in the Fourier domain are [V/Hz], while they are just [V] for RE in the time-domain. The
overall scale of the field is not relevant in this section, so the unit of frequency is left as [Hz|, rather

than [MHz]. In each derivation, the viewing angle is 6§ = 0¢.
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Figure 4: Contours of é; - E(t), for a cascade energy of 1000 PeV. (a) R=1000 m, lateral ICD width of 5 cm. (b)
R=1000 m, lateral ICD width of 10 cm. (c) R=200 m, lateral ICD width of 5 cm. (¢) R=200 m, lateral ICD width

of 10 cm. In all cases, the gray dashed line represents the causality requirement. See text for details.

4.1. The limit n < 1, F(w,0¢) = 1
Recall from Eq. [I0] of Sec. [3.2] that the vector-form of the on-cone field from the RB formalism

takes the form:

RE(w, 0c) _iwEpsin faewh/e

[V/Hz] (1 —in)t/?

€A9 (34)

Let Eo = Egsin Océp, and define we from 7: n = w/we. Equation [34f may be approximated to

first order in the limit 7 < 1, or w < wc, equivalent to requiring AR > 5a?. Using the definition of
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N, vo = we/(27) is

cR
Vo= ————5— 35
7 ona?sin? 0c (35)
Applying the given limit to Eq. and taking the inverse Fourier transform, yields
iwcEy d /°° e~
RE(t,,0c) ~ L g 36
(£, 6c) dty J_oo Yo + 2iwc (36)

The sign convention in the exponential in Eq. [36] is chosen to remain consistent with the RB
formalism. The integral may be performed using the Cauchy integral formula, provided that the
numerator is analytic (exp(—iwt,) obeys the Cauchy-Riemann equations).

Contour integration of Eq. [30] requires a contour C' that satisfies Jordan’s lemma and includes
all w € Re{w}. For the ¢, > 0 case, the integral converges along the contour defined by the infinite
lower semi-circle because the magnitude of the numerator decreases like exp(Im{w}). Note that
this is a negatively-oriented contour. For the case ¢, < 0, use the fact that F,(z(—t)) = X (—w), so
z(—t) = F;1(X(~w)), where F,,(z) = X (w) is the Fourier transform of a function z(t). The final

solution is piecewise:

. exp(2wcty) t, <0
~ 4Eow} (37)

—exp(—2wety) ¢ >0

RE(t,,0¢)
V]
MC calculations show the transition at ¢, = 0 to be smooth [33]. Equationhas a characteristic
width of 1/wec = 1/(27v¢), implying that the pulse-width is controlled by coherence, in the absence
of a form factor. Figure [b| shows v¢ versus the observer distance R and the shower width a.
Under the Lorentz gauge condition for Maxwell’s equations, in the absence of static potentials,
the negative derivative of the vector potential yields the electric field: —9A /0t = E. Using Eq.

the vector potential is

RA(t,,0 . exp(2wcty) <0
W ~ —2Fywc (38)

exp(—2wcty) t >0
Equation 16 of [31] is the vector potential at 6 = 0¢:

RA(tra GC)

Vo = —E{sin(fc)éy (exp(*2|tr|/l"0) +(1+ xl|tr|)7ﬂ”2) (39)
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Figure 5: A contour plot of log, vc, for a parameter space relevant for ground-based radio-Askaryan detectors.

Eq. is a formula that is used in MC by ARA/ARIANNA [28] [33] [49], corresponding to a
fit to MC similar to ZHS. By comparing Egs. and a natural, theoretical explanation of the
fit parameters in [31] arises, albeit from a special case: F=1,and 29 = 1/(we), with x5 > 1, or
21 ~ 0. Thus, the result from [31] has been derived from first principles, rather than fitting to MC.

The fits in Ref. [3I] have x5 ~ 21 =~ 3. The fact that z; and x5 are not relevant to Eq.
is precisely because stipulating that F (w,0c) = 1 leaves the spectral limiting to v rather
than F (w,B). Such a scenario can be important when dealing with observations of cascades with
R = O(100) m, under the influence of the LPM effect. In this case, only a small fraction of the
shower excess profile is within Az.n, and v cuts off the spectrum. Another example in which
spectral limiting is due to v¢, rather than f(w, 0), is when the dielectric medium is denser than ice.
The Askaryan spectra extends to &~ O(10) GHz at 6 = 6 in salt, for example [50]. Higher density
leads to a more compact ICD, suppressing the effect of F (w, 8). Figure |5 shows a parameter space
for v relevant to ARA/ARIANNA.

The result g = 1/(wc) also has a useful physical analogy for the shower width, a. Let the
signal propagation time be T', such that (to first order) R = ¢T'/n. Equation then relates the
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pulse width zg from Eq. to the shower width a:

asinf¢ asinf¢ asin f¢ 2
o= (05) (5) - () @

Equation demonstrates that the pulse width is a fraction of the propagation time 7', and

proportional to (a/R)?.

4.2. The limitn <1, o0 <1, F(w,0c) # 1

Askaryan radiation from cascades experiences further low-pass filtering from F(w,6) # 1 (Sec.
3.4). The parameter o can be used to define a limiting frequency: ¢ = w/wcr, similar to n = w/wc.

The electric field of Eq. combined with the form factor F (w,0¢c) of Eq. is

RE(w,0c) _  F(w,p)wE0sin boefle iwEq sin foei /e .
[V/Hz] 1 = iwwe )12 (1= iw o) 2 (1 + (w/wor) )P

€p = (41)

In the limit ¢ < 1, and < 1, Eq. may be approximated as shown in Eq. using
tr =t— R/e, and wg = 1/2/3 wer.

. 2 —itrw
RE(ty,0c) whwe g d f e (42)

VI T T r % e+ 2iwe) (@ + dwo ) (@ — dwo)

There are two poles in the lower-half complex plane, and one in the upper-half plane. If ¢, > 0,
the contour integral around the lower infinite semi-circle converges because the numerator ap-
proaches zero exponentially as Im{w} — —oo. Conversely for ¢, < 0, the contour integral converges

along the upper infinite semi-circle. The final field is given by Eq. to first-order in e, with

€ = wp/we.

RE(t,,0c) _ Bow?p ) (1— 3€) exp(wot:) <0
R

(43)
—exp(—woty) + 2exp(—2wct;) t >0

Consulting Fig. [5] reveals regions of parameter space where wg < 1 GHz. Consulting Eq.
and Eq. [35shows that € < 1 is typical for cascades with @ < O(1 — 10) m. The relative strengths
of we and wer = /3/2wq are shown in Fig. @, versus the longitudinal and lateral cascade widths.
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Figure 6: A contour plot of wor/we = vor/ve, for a parameter space relevant for ground-based radio-Askaryan

detectors.

The vector potential corresponding to Eq. is

RA(t:,0c) _ Bower | (1= 36)exp(woty) t <0
[V -] V6

(44)
exp(—woty) — eexp(—2wct,) t >0

Equations and show that the field remains bipolar but asymmetric, and asymmetric in
time, from the interplay between coherence and the form factor. The pulse width is enhanced due
to the presence of two different limiting frequencies, wy = 1/2/3wcr, and we. Equation (45| defines

a parameter showing the relative importance of the two limiting frequencies:

¢ = wer /we = (V2mpop) (%)2 (45)

Fig. |§| is a contour graph of ¢’ in a parameter space relevant for ARA/ARIANNA. The first
term in parentheses in Eq. represents the relative importance of ﬁ(w, 0). The second term in
parentheses is the ratio of the longitudinal cascade width to the observer distance, represents the

quality of the Fraunhofer limit.
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4.3. Generalization of Eq.

The purpose of Eq. is to account for excess charge at lateral distances greater than one

Moliere radius. Consequently, Eq. may be generalized to

RE(w, ) _ i ajiwEge B/
(

[V/Hz] 1 —iw/we) 2 (1 + (w/wer 5)%)%/2

(46)

Making the same approximations leading up to Eq. and exchanging the order of summation

and integration, yields

—itrw

RE(t:,0c) wowi j{ €
LAY E dw A7
V] z; T Cdt (W Ziwe) (w + iwo ) (@ — i ;) 0

The summation terms of Eq. [7] are equal to Eq. with the substitution wy — wo ;:

(1- %%) exp(wo jtr) t, <0

Fow?
tr,ec Z 0 O_] (48)

=0 —exp(—wo jtr) + 2exp(—2wcty) t >0

5. Summary

The Askaryan fields for a neutrino-induced high-energy cascade have been presented, accounting
for the LPM effect, and ﬁ(w, 0). The fully analytic calculations and associated code require no a
priori MC analysis, making them computationally efficient and accurate. The cascade model has
been verified independently, up to an energy of 0.1 EeV, and the lateral shower structure has been
shown to be constant versus depth within the dielectric medium, near depths where the radiation is
maximal. The code computes the entire field, for any frequencies, times, or viewing angles chosen
by the user. Table [1| contains brief summary of the results and tools presented in this work.

The LPM effect is found to modify low-frequency emission, to suppress high-frequency emis-
sion, and to narrow the Cherenkov cone. The F (w, ) function smooths the field in contours of
field strength versus time and viewing angle. F (w) is similar to a two-pole, low-pass filter, with
the limiting frequency determined by cascade Moliere radius. The 6-dependence in the form of
ﬁ'(w, ) implies that the filtered radiation depends on the laterally-projected wavevector. Finally,
the field shows interesting causal structure that could serve as a discrimination technique between

the distance R and the cascade energy, for in situ detectors such as ARA and ARTANNA.
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Effect Eq./Fig. Sec.
Complete model ég - E(w, 0) Fig. |3 Sec.
Complete model &, - E(w, ) Fig. Wi Sec. [3.5
Cascade Form Factor, ﬁ(w,@) Eq. 26|  Sec. 342
E(t,0c), Fw,0) =1,n<1, Eq. g Sec. 4.1

E(t,0¢), ﬁ(wﬁ) 1, n<1, Eq. 43 Sec. 4.2

wcr /we Figure of Merit Eq. 45 Sec. [4.2

Table 1: A summary of specific results. Figures [3| and 4] may be reproduced using the open-source code:
https://github.com/918particle/AskaryanModule.

Time-domain expressions were derived for the fields by computing the inverse Fourier transform
of the RB model, under specific frequency limits. Future work will focus exclusively on the time
domain, for viewing angles 6 # ¢, and frequencies w ~ w¢ and w ~ wcp. Having theoretical
time-domain signals on hand facilitates Askaryan-based neutrino searches by allowing thermal fluc-
tuations to be rejected on the basis of non-correlation with theoretical templates. Currently, in
situ Askaryan-based detectors are limited by thermal noise. Rejecting the thermal noise in favour
of neutrino signals is an exercise in the mathematical analysis of thermal fluctuations [51]. Armed

with a firm theoretical understanding of the Askaryan effect, this challenge is made easier.
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7. Appendix

7.1. Causal Features and Poles of Askaryan Radiation

The complex pole-structure of the various models each demonstrate how the models treat the

issue of causality. The E-field of ZHS, on-cone in Eq. takes the form

RE B2 iw
Y Ew
[V/Hz] 00 (W + iwp ) (w — iwo )
Figure 16 of ZHS shows that the E-field phase is ~ 90° below 1 GHz, or a phase factor of

€y (49)

exp(im/2) = i. The overall minus sign in Eq. is just a convention. Taking the inverse Fourier

transform, the time-domain form of the field at the Cherenkov angle may be written

RE(t)  ,. d [~ et
v ooy /_oo @+ o) (o — ) (50)

The integral converges via Jordan’s lemma if the contour is the infinite upper semi-circle for
t < 0, and, for ¢ > 0, the infinite lower semi-circle. There is an overall minus sign from the clockwise

contour. The result is

R[]i]/(]t) T exp(wot) t<0 (51)
—exp(—wot) t>0
The existence poles above and below the real line is deemed a causality violation by RB. Phys-
ically, the field changes overall sign when the angular acceleration of the charge relative to the
observer changes sign. Feynman’s formula [30] states that the field from an accelerating charge
goes like E o sgn(1 — nt - 5)@ x 6, where 5 is the velocity of the charge, and @ is a unit vector at
the charge location in the direction of the observer. E changes sign as the charge crosses the plane
in which R is minimized. The quantity 0 increases rapidly, until the plane crossing, after which it
decreases rapidly.
From Eq. 50| Fzus (w) o (w+iwe) ™! (w—1iwp) L. Treating ¢ > 0 and ¢ < 0 separately, the inverse
Fourier transform of Fyug (w) with respect to the coordinate p’ yields f(x’) o exp(—p’). Therefore, a
logical inference is that the full, 3D ICD responsible for F (w, 0) is distributed exponentially. Geant4

simulations show this to be correct in Sec. [T.3
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7.2. Spectral, Phase, and Angular Dependence

For cases in which Ec < Eppuy, the associated code agrees with the ZHS parameterization.
Equations via the associated code, are compared in Figs. to Eqgs. which are Eqgs.
20-21 from ZHS, with A8 = 2.4°(vy/v), and vy = 0.5 GHz.

BB@.0=00) _ ;g7 Bo (v)_ 1,
[ 3z = Hdo [TeV] (u()) 1+ (v/w)? 0 (52)

E(w,0) = E(w,0 = 0¢) exp

1(0-6c\"]|.
—2( Ad ) 169 (53)
In Fig. [7| (left), the spectra are scaled by R[m]/Ec[TeV], where E¢ is the cascade energy in
TeV. In Fig. 7| (right), the angular dependence of RB and ZHS is compared. The factor F in Fig.
corresponds to a shower with a lateral ICD of exponential form, with a width of ~ 5 cm. The

cone-width is also inversely proportional to a in the RB model - an important detail that accounts

for cone-width narrowing under the influence of the LPM effect.
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Figure 7: (a) The spectrum from ZHS (dashed lines) and |é - E(w)| from the code (solid lines), scaled by R/Ec.
The cascade width is @ = 1.5 m, and R = 1000 m and F # 1. (b) The angular dependence of the ZHS fits (dashed

lines), compared to this work (solid lines).

The phase produced by the associated code is shown in Fig. and compared to the ZHS
result at the Cherenkov angle. The phases agree, up to frequencies at which the cone-width has
attenuated the radiated power. Above these frequencies, the group delay (the slope of the phase)

grows exponentially.
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The spectral and angular dependence under the influence of the LPM effect and ﬁ(w) is shown
in Fig. [0 revealing three effects. First, a low-frequency enhancement is caused by the cascade
elongation, relative to ZHS. The effect is physical, as long as n < 1, so that the stretched a
is still < Azeon. Second, a high-frequency attenuation in the spectrum is expected if ka > 1:
W(n,0) x exp(—(ka)?) in Eq. Third, cone-width narrowing seen in Fig. |§| (right) follows from
RB, where the cone-width is inversely proportional to a, and a has been stretched via the LPM

effect.

7.8. Numerical Study of the Excess Charge Distribution

Geant4 [53] [54] is used to derive numbers for v/27pp, and those results are checked with Egs.
Refs. [46] [47, [48] are other works that used GEANT /Pythia to calculate Askaryan radiation
properties. The GEANT4 high-energy electromagnetic option-1 physics list was used, with a MC
threshold of 1 MeV, e® primaries, and ice of density 0.917 g/cm® and at a temperature of 240
K. Although the LPM effect is important primarily for electromagnetic cascades, F (w,0) does not
depend on a, so it is also valid for hadronic cascades.

CPU memory constraints forbid accounting for all tracks, so a pre-shower /sub-shower approach
is taken to access more memory. A pre-shower drops all particles with energy below 0.1 PeV. The
trajectory, position and type of the pre-shower particles generated by the primary are recorded and
sent to separate CPUs. Each particle in the pre-shower then becomes an independent cascade, with
a second MC threshold of 1 MeV.

The lateral ICD is shown in Fig. (a). The results follow o exp(—v/2mpop’) in the range

180
160
__ 140
120
100

Phase (deg
[ee]
o

Frequency [ MHz]

Figure 8: Phase of the Askaryan signal versus frequency. The dashed line is the ZHS result, at the Cherenkov angle.

The code produces the solid lines at the given viewing angles.
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Figure 9: (Left): |ég - E(w)|, for E¢ = 10 PeV, R = 1000 m, and 6 = 57°. The dashed line is the ZHS fit to Monte
Carlo, and the solid line is the result from the associated code, with the LPM effect applied. (Right): The angular

dependence of the same |ég - E(w)| as the solid line at (left), with the LPM effect applied (gray), and without it
(black), at v = 300 MHz.

o' = 1[0, p1/dice] (0-113 mm in ice, with p; = 10.4 g cm~2 and dice = 0.917 g cm™3). The gray data
corresponds to Geant4 tracks inside a 100 PeV cascade, 25+ 0.01 ns from the beginning of the first
Geant4 interaction. The fit diverges only at radii where the radiation is ~ 1 % of the total signal.

The results for v/2mpy are shown in Fig. (b), averaged over 10 cascades with Ec = 100 PeV.
Each point contains tracks existing within 10 ps of the time on the x-axis. Early in the cascade, the
particles have not yet diffused laterally, implying a higher value of v/27py. The dashed horizontal
line represents the average between 15-35 ns, when lateral diffusion saturates.

The ICD per unit area, vs. Moliére radius, is shown in Fig. (a), plotted along with Eq.
Figure [L1] (b) shows the fitted shower age s as a function of time after the first interaction. Eq.
was fit to the MC data sets at each time bin, with s as a free parameter. The results match the
definition of s, from which the gray dashed line in Fig. is derived.

Figure matches Eq. to MC data, neglecting photons, with a 1 MeV MC threshold. The
Gaussian form is evident [55], justifying the RB saddle-point expansion. The ICD as a function of 2’
is shown in Fig. . The width of f(x) versus 2’ is proportional to the width of the time-window
(10 ps), justifying its approximation as a d-function in f(x’).

The parameter ny.x in RB is the number of excess megative charges. The fractional excess
charge is Aq = (Ng- — Ng+)/(Ne= 4+ Net ), 80 nmax = NAq. The MC shows that Ag to is linear
with depth. The y-intercept is sensitive to the MC threshold, but the slope is not. The associated
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Figure 10: (a) N,— — N4+, versus p’ at 25 ns into a 100 PeV shower (gray points). The slope of the exponential is

vV 2mpo, by Eq. The fit is between p’ = 0 and p’ = 10.4 g cm™2 in ice (one Moliere radius), or 113 mm. (b) Fit

results for the parameter v/2mpg vs. time within the shower. The dashed line is the average of the points between

15-35 ns.
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Figure 11: (a) The charged ICD density, at 10 ns and 25 ns after the first interaction. The solid lines are fits of
Equation to the points with the shower age, s, as free parameter. (b) The fitted shower age, s, versus time since

first interaction. The dashed line is the theoretical expectation.
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Figure 12: (a) ngot versus 2/, for a 100 PeV cascade. (b) The ICD at 254 0.01 ns after the first interaction. (c) The

fractional negative charge excess of a 100 PeV shower, with a 5 MeV MC threshold from Geant4. The solid line is
the ZHS result with a 5 MeV MC threshold, and the dashed line is a linear fit to the OSC results.

code includes the linear dependence of Aq on depth by sampling the linear fit at zy.x. Figure
shows Aq and that of ZHS.
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