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Abstract

The Askaryan effect describes coherent electromagnetic radiation from high-energy cascades in

dense media with a collective charge. We present an analytic model of Askaryan radiation that

accounts simultaneously for the three-dimensional form factor of the cascade, and the Landau-

Pomeranchuk-Migdal effect. These calculations, and the associated open-source code, allow the

user to avoid computationally intensive Monte Carlo cascade simulations. Searches for cosmogenic

neutrinos in Askaryan-based detectors will benefit from computational speed, because scans of

geometric parameter space are required to match neutrino signals. The Askaryan field is derived

from cascade equations verified with Geant4 simulations, and compared with prior numerical and

semi-analytic calculations. Finally, instructive cases of the model are transformed from the Fourier

domain to the time-domain. Next-generation in situ detectors like ARA and ARIANNA can use

analytic time-domain signal models to search for phase correlations with event candidates.
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1. Introduction

The landmark observation of PeV neutrino interactions in Antarctic ice by the IceCube col-

laboration [1] has highlighted the urgency for progress in ultra-high energy cosmogenic neutrino

IOpen-source code associated with this work: https://github.com/918particle/AskaryanModule
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(UHE-ν) searches, at energies 1016 − 1020 eV [2] [3] [4]. Cosmogenic neutrinos represent a long

awaited prize in both astrophysics and particle physics, because of their potential to explain the

origin of UHE cosmic rays (UHECR), as well as the chance to study electroweak interactions at

record-breaking energies.

The GZK process is an example of a pγ interaction yielding UHE-ν production from the cosmic

ray flux on the cosmic microwave background [5] [6]. Most UHECR flux models lead to the conclu-

sion that 100 km3-volume detectors are required to measure the UHE-ν flux [7] [8] [9] [10]. UHE-ν

also present the possibility revealing physics beyond the Standard Model, via measurements of

UHE-ν deep-inelastic scattering cross-sections [11] [12]. Models matching simultaneously the PeV

flux from IceCube, the diffuse GeV gamma-ray flux, and the UHECR flux, are now understood to

constrain the UHE-ν flux [13] [9] [14].

A new generation of detectors for UHE-ν is based on the Askaryan effect, in which a UHE-ν inter-

action produces a cascade that radiates radio-frequency pulses from within a dielectric medium [15]

[16] [17]. This growing class of experiments uses the special radio-frequency properties of Antarc-

tic ice, in order to search for UHE-ν cascades efficiently [18] [19] [20]. The Radio Ice Cernekov

Experiment (RICE) conducted the pioneering search [21]. The Antarctic Impulsive Transient An-

tenna (ANITA) is a balloon-borne detector [22] [23]. The Askaryan Radio Array (ARA), and the

Antarctic Ross Ice Shelf Antenna Neutrino Array (ARIANNA) are two in situ detectors similar to

RICE, but designed on a much larger scale [24] [25] [26] [27] [28]. The ExaVolt Antenna (EVA)

is a proposed design to improve on the ANITA detection scheme, using the balloon itself as the

antenna [29].

The Askaryan signal expected in each of these experiments must be understood in detail. Zas,

Halzen, and Stanev (ZHS) created a Monte Carlo simulation which calculated the electric field by

tracking the radiation from every cascade particle, using the Fraunhofer approximation [30]. This

technique is computationally expensive, and cannot be scaled to UHE-ν energies. Semi-analytic

models [31] [32] by J. Alvarez-Muniz, A. Romero-Wolf, R.A. Vazquez, and E. Zas (ARVZ) solve

Maxwell’s equations, treating the cascade charge excess as a source current. These models require

only the profile of the negative charge excess. Semi-classical methods become fully analytic when

the Greisen and Gaisser-Hillas calculations are used for the profile [33].

J. Ralston and R. Buniy (RB) [34] presented a fully analytic, complex analysis of Askaryan

radiation, expanding around the global maximum of the cascade profile. This approach yields
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theoretical insight into observable properties of the field, while matching the form of the ZHS

particle-tracking Monte Carlo. The model includes an explanation of signal causality, and merges

coherence zones in a continuous fashion. A proper handling of non-far-field coherence zones is

vital for lowering energy thresholds in the in situ Askaryan detectors (ARA/ARIANNA), because

the lowest-energy events, by definition, are only detectable above thermal thresholds when the

neutrino vertex is in coherence zones other than the Fraunhofer zone. Lowering energy thresholds

is important for capturing more UHE-ν signals, because the flux is expected to increase with

decreasing energy.

The RB work, however, may be generalized to cascades with realistic shape, from the cascade

form factor, from lateral charge diffusion, and cascade-elongation from the Landau-Pomeranchuk-

Migdal (LPM) effect. In this work, a model is presented that begins with RB, and include these two

major extensions. These two effects constrain the high-frequency Fourier modes and solid angle of

the radiation. The model is checked against Geant4 simulations at high energies (> 1 PeV) using a

pre-shower, sub-shower technique, performed on clusters at the Ohio Supercomputing Center. The

results are shown to follow the Greisen electromagnetic shower geometry [35]. Finally, the Askaryan

field is expressed in the time-domain under several scenarios, useful for digital signal processing and

cross-correlation in experiments like ARA and ARIANNA.

2. Units, Definitions, and Conventions

All calculations in this work have been encapsulated into an open-source C++ class, available

online 1. The primary function of this code is to predict the electric fields that Askaryan-based

detectors would detect. In all sections, this class will be called the associated code, or simply the

code.

The coordinate systems are shown in Fig. 1a. Observer coordinates are un-primed, and charge

excess coordinates are primed. The cascade current J(t) is described in Sec. 3.2, and will be called

the instantaneous charge distribution (ICD) in subsequent sections. The vectors ρ and ρ′ refer to

the lateral distance from the cascade axis, and z and z′ refer to the cascade axis. The origin for both

systems is the location of the cascade maximum, with z′ = z = 0 and ρ = ρ′ = 0. The viewing angle

is θ. Bold variables, and variables with a circumflex, êi, refer to vectors. The observer distance is

1https://github.com/918particle/AskaryanModule
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Figure 1: (a) Coordinate systems. Un-primed coordinates refer to the observer, and primed coordinates refer to

the reference frame of the vector current. (b) The curves represent the total charge content, with the instantaneous

charge density (ICD) shown by the internal curves, versus depth after the first interaction in the medium. The solid

curves were made for shower energy 1014 eV and the dashed curves for a shower profile having been stretched by

either the LPM effect, or simply by going to a higher energy. The Greisen model was used for the form of the cascade

profile. The nmax parameter will refer to the negative charge excess.

R = |x− x′|, ω refers to the angular frequency, and k = (2π)/nλ and q = n(ωR,ωρ)/(cR) refer to

one- and three-dimensional wavevectors in the dielectric, with a refractive index n. Although the

code takes n = 1.78 as a default value, it may be altered to apply to other uniform media. The

Cherenkov angle is defined by the index of refraction: cos θC = 1/n. The index of refraction at RF

frequencies for bulk ice in Antarctica is 1.783± 0.003 [36].

The archetypal cascade profile is shown in Fig. 1b, in which the total number of cascade particles

is shown, versus depth along the z′ axis. The depth is Pz′, where P is the bulk density of ice (0.917

g/cm3). The parameter nmax will refer to the number of negatively charged particles (typically

≈ 20% of the total - see Sec. 3.4.1 and the Appendix Sec. 7.3 for details). The parameter a

is the Gaussian width of the cascade profile near cascade maximum. The cascade is initiated by

an electroweak neutrino interaction, where the neutrino energy is Eν , and the total energy of the

cascade is EC.

The units of the electromagnetic field in the Fourier domain are V/m/Hz, often converted in the

literature to V/m/MHz. To make the distance-dependence explicit, both sides of field equations

are multiplied by R, making the units V/Hz. In Sec. 4, the field normalization constant is E0, and

it contains the energy-dependence. E0 may be linearly scaled with energy, provided the parameters

a and nmax are derived consistently from the Greisen model. Equations in Sec. 4 are proportional

to ωE0, so the units of E0 are V/Hz2.
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In the original RB work, the following convention for the Fourier transform G̃(ω) of a function

g(t) was used:

G̃(ω) =

∫ ∞
−∞

eiωtg(t)dt (1)

g(t) =
1

2π

∫ ∞
−∞

e−iωtG̃(ω) (2)

The sign convention shown in the exponent is used in RB, though the opposite sign convention is

more common in mathematical physics. The definitions in Eqs. (1, 2) have been kept for consistency

with Sec. V of [34]. The sign convention may be toggled in the code, but the output does not depend

on this choice, because the appropriate transformation in time is applied. All frequencies are shown

in MHz in spectral plots, for comparison to the literature. The symbol ∼ above a function denotes

a Fourier domain quantity. In Secs. 3.2 and 3.4, the three-dimensional Fourier transform is used to

describe the form factor in three-dimensional frequency-space, with the normal sign convention:

F̃ (q) =

∫
d3x′f(x′)e−iq·x

′
(3)

3. Combination of the RB model, the LPM Effect, and the Cascade Form Factor

In Sec. 3.1, the RB model [30] is presented for clarity, beginning with all assumptions made.

Next, the model is enhanced by treating two new effects: the LPM effect (Sec. 3.3) and the cascade

form factor, F̃ (Sec. 3.4).

3.1. General Assumptions, and the Basic RB Model

The conventions are taken from Sec. 2 to build the RB model [34]. RB derive the Askaryan

fields from Maxwell’s equations in the Lorentz gauge for a dielectric medium, by expanding with

a special scalar parameter η. The source current, J(t′,x′), is described by an ICD f(z′ − vt, ρ′),

excess charge profile n(z′), and cascade speed v:

J(t′,x′) = vn(z′)f(z′ − vt, ρ′) (4)

η =

(
a

∆zcoh

)2

=
k

R
(a sin θ)2 (5)
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The function f(z′−vt, ρ′) is the ICD and the Fourier transform of f(z′−vt, ρ′) is F̃ (ω). Equation

5 is the squared ratio of a, and ∆zcoh, the longitudinal range where the Askaryan radiation must

be coherent. To understand ∆zcoh, consider Feyman’s formula [30]. Radiation from an accelerating

point charge is proportional to the angular acceleration θ̈ relative to the observer. The coherence

regime is defined by |z′| . ∆zcoh, where θ̈ and R(z′) are constant in time to first order, and θ̈ is

maximized. RB show that if R(z′) < λ in this limit, ∆zcoh <
√
R/(k sin2 θ).

The dominant Askaryan radiation arises from the portion of the shower profile satisfying |z′| .

∆zcoh. In either the Fresnel or Fraunhofer regimes, η < 1, but the RB model is not restricted to

η < 1. The calculations should be valid for any η value, rather than the pure far-field approximation

(η → 0, and kR� 1, R� a). If a� ∆zcoh, then the fields have spherical symmetry and the limit

kR� 1 corresponds to the Fraunhofer approximation. Conversely, if a� ∆zcoh, then η →∞, the

fields have cylindrical symmetry, and kR� 1 corresponds to the Fresnel limit.

The longitudinal cascade width a, and therefore η, is derived in the code from either the Greisen

or Gaisser-Hillas cascade profile functions (Secs. 3.4-3.4.1), and can be modified by the LPM effect.

The Greisen function represents electromagnetic cascades, and the Gaisser-Hillas hadronic cascades.

The associated code requires the type of cascade profile as an input, and whether the LPM effect

must be applied.

3.2. The RB Field Equations

RB insert the vector current J(t′,x′) into Maxwell’s equations, and solve for the vector potential:

cA(x′) =

∫
d3x′

eik|x−x
′|

|x− x′|

∫
dt′eiωt

′
J(t′,x′) (6)

RB then define R(z′) =
√

(z − z′)2 + ρ2), and expand around ρ′ = 0:

|x− x′| ≈ R(z′)− ρ · ρ′

R(z′)
+

ρ′2

2R(z′)
(7)

In Eq. 7, the third term on the right-hand side is dropped, because ρ′ � R(z′). The vector

potential in Eq. 6 is then factored into the form factor F̃ (ω) and a vector function. F̃ (ω) is the

three-dimensional Fourier transform of the ICD, and the vector is governed by n(z′). Thus, F̃ (ω)

describes the charge distribution, and the vector portion describes the charge evolution. Equations

8-9 summarize the result. In Eqs. 8-9, ÃFF is the vector potential, named the Fresnel-Fraunhofer

(FF) potential in RB.
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Ã(ω, θ) = ÃFF (ω, θ)

∫
d3x′e−iq·x

′
f(x′) (8)

Ã(ω, θ) = F̃ (ω, θ)ÃFF (ω, θ) (9)

Equations 10-13 express the general RB result for the electric field E = −∂A/∂t, in terms of

the frequency ν, viewing angle θ, and η:

RẼ(ν, θ, η)[
V

MHz

] = 2.52× 10−7
a

[m]

nmax

[1000]

ν

[GHz]
F̃ (q)ψE (10)

ψ = −ieikR sin θ (11)

E =W(η, θ)

(
cos θC − cos θ

sin θ

)
êr +W(η, θ)

(
1− iη cos θC

sin2 θ

cos θ − cos θC
1− iη

)
êθ (12)

W(η, θ) =

(
1− iη

(
1− 3iη

cos θ

sin2 θ

cos θ − cos θC
1− iη

))−1/2
exp

(
−1

2
(ka)2

cos θ − cos θC
1− iη

)
(13)

Equation 10 is the total field, with a overall phase factor defined in Eq. 11. Equation 12 contains

the vector structure, and Eq. 13 governs the phase and angular structure.

3.3. The Landau-Pomeranchuk-Migdal (LPM) Effect

The Landau-Pomeranchuk-Migdal effect, or LPM effect, suppress the pair-creation and bremsstrahlung

cross-sections at cascade energies above a material-dependent constant known as the LPM energy

or ELPM [37]:

ELPM =
(mc2)2αX0

4πc~
= 7.7 TeV/cm ·X0 (14)

In Eq. 14, m is the electron mass, α is the fine-structure constant, and X0 is the radiation

distance (ELPM = 0.303 PeV for ice). If the particle energy is greater than ELPM, the quantum

mechanical formation length of typical bremsstrahlung and pair-production interactions is longer

than atomic separations, leading to quantum interference that suppresses cross-sections. The result

is a longitudinal shower elongation, from the non-interacting, higher-energy particles. The LPM

effect is reviewed by S.R. Klein in Ref. [37], and Ref. [38] explains how LPM physics may be added

to the ZHS MC approach.
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The LPM changes how the RB model must be applied. Under normal circumstances, the

quantity nmaxa approximates the area under the cascade profile, or the total number of cascade

particles. RB note that, for particles with energy greater than some critical energy Ecrit, a ∝√
ln(EC/Ecrit) and nmax ∝ (EC/Ecrit)/

√
ln(EC/Ecrit − 0.33), so nmaxa ∝ EC, for the Greisen

cascade parameterization. It is shown in Ref. [39] that in the LPM-regime, a ∝
√
EC/Ecrit. While

it may appear that changing the energy scaling of a violates energy conservation through the field

normalization nmaxa, this is not the case.

First, the amount of radiated energy does not have to correspond to the cascade energy, if the

shape of the cascade is modified. The Frank-Tamm formula for a uniform charge moving at a finite

track [34] shows that the radiated goes like d2P/dΩdω ∝ L2, for track-length L. The LPM effect

elongates L, so a relative increase in the radiated energy should be expected, provided the track

is within ∆zcoh. It is shown in Sec. 4 that enhancements due to cascade elongation are limited

by a coherence frequency, the cascade form factor, or both. Also, there is additional limitation

in radiated power through the reduction of the angular width of the Cherenkov cone under the

influence of the LPM effect (see Appendix Sec. 7.2).

Second, there is no reduction in nmax that corresponds to the relative increase in a. Figures

12 and 13 of Ref. [40] demonstrate that the electromagnetic cascades elongate while accounting

for the LPM effect, but that the dependence of nmax on the shower energy is not reduced. Figure

12 of Ref. [40] shows that the cascade maximum location grows and fluctuates more strongly at

energies above ELPM. However, Fig. 13 of Ref. [40] shows that the energy dependence of nmax

stays approximately the same, and nmax fluctuates mildly for EC in the GZK primary energy range.

Physically, all cascade particle energies must eventually decrease to below ELPM in a cascade. By

definition, this must take place before the cascade maximum, so to first order nmax is actually

governed by standard cascade physics, even when EC > ELPM initially.

S.R. Klein notes in Ref. [37] that the LPM effect may influence the form factor, F̃ (ω). F̃ (ω) is

controlled by the lateral ICD, from multiple scattering (MSC) effects that lead to a mean scattering

angle 〈θMSC〉 for cascade particles incident on atoms in the medium [37] [35]. 〈θMSC〉 takes the

following form for a particle of energy E:

〈θMSC〉 =
Es

E

√
d

X0
(15)

X0 is the radiation length in units of distance, and d is the distance over which the scattering
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occurs, and Es is the Molière scattering energy, where Es = mc2
√

4π/α ≈ 21.2 MeV. The LPM

effect increases d relative toX0, increasing 〈θMSC〉. Although 〈θMSC〉 is enhanced by the LPM effect,

it is also inversely proportional to energy. This implies that the inevitable pile-up of particles with

energy Ecrit ≈ Es actually governs the ICD width, at a point in the cascade when the LPM effect

is no longer important.

Finally, a remark about “shower fluctuations” is prudent. First, while the LPM effect may cause

the depth of the cascade maximum to fluctuate (see Fig. 12 of Ref. [40]), the location of cascade

maximum is irrelevant for Askaryan radiation, just as any radiation field is independent of the origin

of the coordinate system. The origin in the associated code is the location of cascade maximum,

wherever it occurs. Much harder to model is the effect of the multi-peaked cascade profile typical of

LPM-induced fluctuations. This can lead to a reduction in the Cherenkov cone-width, and further

modified by the elongated tail of the cascade profile [41]. However, it is shown in Ref. [42] that

the sub-peaks only alter the waveform in limited circumstances, such as being off-cone by ≈ 10◦,

and in the Fraunhofer regime. The waveforms in Ref. [42] all contain the basic bi-polar structure

produced by the associated code, despite the multi-peaked cascade profile.

In summary, the main effect LPM physics has on Askaryan radiation is the filtering via the

elongation of the cascade profile. The associated code quantifies this by elongating the shower

width a, using calculations by Klein and Gerhardt shown in Fig. 2 [39]. In scenarios where LPM is

unimportant (initial hadronic-dominated processes [41], cascades with EC < ELPM), the associated

code draws the width and height of the negative charge excess profile from the usual Greisen and

Gaisser-Hillas formulations [35] [43].

3.4. The Cascade Form Factor, F̃

The factorization of the longitudinal charge excess evolution, ÃFF (ω, θ), and the instantaneous

properties of the lateral charge distribution, F̃ (ω), leads to the interpretation of F̃ (ω) as a filter.

Filters are fully described by pole-zero diagrams, which display the Laplace transform of the filter

transfer function. Impulsive E-fields with no DC-component automatically approach 0 as |ω| → 0,

meaning F̃ should not require any zeros. Thus, F̃ (ω) should be completely defined by poles in the

complex ω-plane.

D. Garcia-Fernandez et. al. (Ref. [44]) show that the integrals over individual tracks in the ZHS

algorithm can be generalized to all coherence regimes, when integrated numerically. The authors
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Figure 2: The length of the neutrino-induced cascade, including the LPM effect, from ref. [39].

of Ref. [44] then insert the form factor chosen in Ref. [45] into the RB framework to demonstrate

agreement (Fig. 7 of Ref. [44]). This agreement occurs at frequencies below 120 MHz, below the

bandwidths of ARA/ARIANNA. The lateral ρ′-dependence of the chosen form factor is gaussian

(f ∝ exp(−ρ′2)), yielding gaussian behavior in the Fourier domain (|F̃ | ∝ exp(−ω2)). Geant4

simulations and the Greisen model show that f(x′) is not gaussian (Sec. 3.4.1 and Appendix Sec.

7.3). Additionally, the ultra-violet divergence in Ref. [44] is attributed to the assumption that the

dielectric constant ε(ω) is not absorptive, however, the effect of F̃ (ω) is apparent in that model

near 1 GHz. This is because the filtering effect of F̃ (ω, θ) occurs when the Askaryan radiation of

all finite tracks in a cascade are summed.

The ZHS form factor, F̃ZHS(ω), is constructed of poles which imply that the lateral ICD f ∝

exp(−ρ′). The key result for F̃ (ω) is given in Eq. 16, in terms of the viewing angle θ, the angular

frequency ω, and (
√

2πρ0)−1, the distance from the cascade axis (ρ′ = 0) at which the negative

charge excess has decreased by 1/e.

F̃ (ω, θ) =
1(

1 +
(

(ω/c) sin θ√
2πρ0

)2)3/2
(16)

Intuitively, the squared ratio in the denominator of Eq. 16 compares the lateral projection of

the wavevector with the physical extent of the charge excess. If the charge excess is laterally large,

compared to the wavelength, then Eq. 16 begins to act as a low-pass filter. By substituting Eq.
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16 into Eq. 10, the RB model is completed, properly accounting for LPM elongation and the ICD.

The form factor F̃ (ω, θ) is derived from fits to Geant4 cascades, for EC = 1 − 100 PeV. Once the

quality of these fits is established, one may proceed with the theoretical cascade models, with no

need of further numerical simulation.

3.4.1. The Greisen Model

K. Greisen provided a comprehensive review of the longitudinal charge evolution, and lateral

distribution, within electromagnetic cascades [35], by combining earlier work by Molière, Nishimura

and Kamata, Landau, and others. The integrated charge at depth z0 in the medium is

ntot(z0) =
0.31√

ln(EC/Ecrit)
exp

{
z0

(
1− 3

2
ln(s)

)}
(17)

In Eq. 18, z0 is in units of radiation length (36.08 g cm−2), and the cascade energy EC in units

of GeV (Ecrit = 73 MeV) [30, 33]. The shower age is s = 3z0/(z0 + 2 ln(EC/Ecrit)). Equation 17

is most accurate near shower maximum: zmax = ln(EC/Ecrit). K. Greisen showed that 〈lnntot〉 ≈

0.7(s − 1 − 3 ln s). When s = 1 at zmax, 〈lnntot〉 = 0, implying negligible fluctuation in nmax. It

may be shown that a ∝ √zmax [34]. For nmax = ntot(zmax), nmaxa ∝ EC/Ecrit. The factor nmaxa

approximates the area under the peak of Eq. 17, and is proportional to EC for EC . ELPM. The

scaling becomes steeper under the influence of the LPM effect (Fig. 2). The cascade lives longer,

so a higher fraction of EC is radiated rather than deposited in the ice.

The lateral ICD arises from multi-scattering effects (MSC processes in Geant4), with average

scattering angle 〈θMSC〉 (Eq. 15), and a Molière radius defined by ρ1 = EMSC/Ec, in radiation

lengths. Large errors arise for angles θ � 〈θMSC〉, or (ρ′ > ρ1), but few particles have ρ′ > ρ1. The

〈θMSC〉 is expressed in Eq. 18, for particles of energy ε in electromagnetic cascades [37]:

〈θMSC〉 =
EMSC

ε

√
z0 =

mec
2
√

4πz0/α

ε
≈ 21.2 [MeV]

ε

√
z0 (18)

Equation 18 implies the lateral ICD should be widest near nmax, where the average particle

energy is minimized. The lag in z′ of most particles with respect to the cascade front is O(1− 10)

cm at nmax. This lag is described in Eq. 13 of [37], assuming that particles at ρ′ have equal s.

Nishimura and Kamata refine the approximation, provide the lateral charged particle density, D,
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and the result is known as the NKG-function, shown in Eq. 19.

D =
ntot
2πρ21

Γ(4.5− s)
Γ(s)Γ(4.5− 2s)

(
ρ′

ρ1

)s−2(
1 +

ρ′

ρ1

)s−4.5
(19)

Numerical results in the Appendix Sec. 7.3 show that this work agrees with Eqs. 17-19, and

the ICD is assigned a three-dimensional function f(x′). In Sec. 3.4.2, F̃ (ω) is derived analytically

from f(x′). For details on the ICD, f(x′), see the Appendix Sec. 7.3. Other efforts to model the

ICD and the resulting Askaryan radiation can be found in Refs. [46, 47, 48].

3.4.2. Analytic Formula for F̃ (ω, θ)

The definition of F̃ (ω, θ) is

F̃ (q) =

∫
d3x′e−iq·x

′
f(x′) (20)

The ICD f(x′) is given by a general parameterization of the Greisen model:

f(x′) = ρ20δ(z
′) exp(−

√
2πρ0ρ

′) (21)

The choice of Eq. 21 is motivated in the Appendix Sec. 7.3. Recall that the ICD is meant to

describe the number density of the negative charge excess, not the total charged particle number

density. Geant4 MC calculations and the Greisen model predict the exponential form, and the

ZHS parameterization suggests it in the Fourier domain. C.-Y. Hu et al chose a double-Gaussian

form [45], which is not accurate near ρ′ = 0, but highlights the relationship between theoretical

parameters and numerical fields. Note that the units of the 1/e width
√

2πρ0 and δ(z′) are inverse

length, giving f(x′) units of number density.

Fitted results for the parameter
√

2πρ0 for times between 20-30 ns (s ≈ 1) indicate that
√

2πρ0 ∼

is constant with respect to cascade depth. The solution to Eq. 20 is as follows: the trivial z′

integration is performed, setting z′ = 0 without loss of generality. Next, two convenient variables

are defined, and shown in Eqs. 22 and 23.

γ =
ω

c
sin θ (22)

σ =
γ√

2πρ0
(23)
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The variable γ is the lateral projection of the wavevector, and σ is the product of γ and the

lateral charge extent. The variable σ compares the laterally-projected wavelength to the lateral

extent of cascade excess charge. In Sec. 4, σ = ω/ωCF, so that ωCF is the limiting frequency.

Substituting Eqs. 21, 22 and 23 into Eq. 20, F̃ (ω, θ) becomes

F̃ (ω, θ) = ρ20

∫ ∞
0

dρ′ρ′ exp
{
−γ
σ
ρ′
}∫ π

−π
dφ′ exp {−iρ′γ cos(φ′)} (24)

From the cylindrical symmetry of f(x′), the φ′ coordinate may be rotated. With φ′ → φ′−π/2,

the φ′-integral becomes a 0th-order Bessel function. A similar result in Ref. [46] contains the Bessel

function in Eq. 24. In Ref. [46], however, the lateral ICD is not evaluated analytically, but through

numeric integrals. After making the substitution u′ = γρ′, the remaining ρ′-integral may be found

in standard tables.

F̃ (ω, θ) = σ−2
∫ ∞
0

du′u′ exp

{
−u
′

σ

}
J0(u′) (25)

F̃ (ω, θ) =
1

(1 + σ2)3/2
(26)

The result for F̃ (ω, θ) is shown in Eq. 26. The Askaryan spectrum is attenuated like ω−3 for

σ � 1, for wavelengths much smaller than the lateral ICD. For σ . 1, F̃ (ω, θ) ≈ (1 + (3/2)σ2)−1.

Given the the location of complex poles for σ � 1, one might suspect problems with causality. It

is important to note, upon transforming the model to the time domain, including the LPM effect

and the effect of F̃ (ω, θ), that the fields do not violate the causality criterion stated by RB [34].

Equation 16 in Ref. [31] contains the Askaryan vector potential versus retarded time (tr),

matched to MC at θ = θC , with six numerical parameters, not counting the overall normalization.

This equation is restated as Eq. 27, and the xi have unique values for tr > 0 and tr < 0.

RA(tr, θC)

[V · s]
= −E′0 sin(θC)êθ

(
exp(−2|tr|/x0) + (1 + x1|tr|)−x2

)
(27)

Equation 26 fully describes the cascade shape, is analytic, and, when combined with ÃFF ,

produces fields that obey causality (see Sec. 3.5). Additionally, F̃ only needs one MC constant:
√

2πρ0. Although the second term in Eq. 27 accounts for the asymmetric MC vector potential in

an ad-hoc fashion, this asymmetry flows directly from Eq. 26 (Sec. 4), and special cases of the xi

13



are derived. Rather than requiring six raw MC numbers, the associated code relies on Eq. 26, and

one MC parameter (
√

2πρ0).

3.4.3. Generalization of Eq. 26

In the Appendix Sec. 7.3, the lateral distribution of excess charge near cascade maximum is

shown to follow Eq. 21 for ρ′ < ρ1, where ρ1 is the Molière radius. To include the effect of charges

beyond a single Molière radius, the following form for f(x′) may be taken:

f(x′) = δ(z′)

N∑
i

ai exp(−
√

2πρiρ
′) (28)

The normalization requirement for the ICD provides the following constraint on the 2N free

parameters:

N∑
i

(
ai
ρ2i

)
= 2π (29)

Note that the units of the ai parameters are the same as the normalization ρ20 in the single-

exponential case. Let αi and σi take the following definitions:

ai = αiρ
2
i (30)

σi =
γ√
2πρi

(31)

With this definition, Eq. 26 may be generalized to arbitrary Molière radii, taking the following

form:

F̃ (ω, θ) =

N∑
i

αi

(1 + σ2
i )3/2

(32)

It is shown in Sec. 4.2 that in the far-field limit, at θ = θC, the effect of extending the form

factor F̃ to arbitrary Molière radii is equivalent to adding a set of additional poles to the Askaryan

field in the complex ω-plane. In the time domain, the Askaryan field picks up a series of exponential

terms corresponding to the added poles.
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3.5. Results of the Model: RB+LPM+F̃ (ω, θ)

The associated code output, including all effects, for êθ ·E(t) is shown in Fig. 3, with EC = 1000

PeV. Figure 3 contains contour graphs, in units of mV/m, versus the retarded time in nanoseconds,

and θ in degrees. The quadratic grey dashed line on the contours is a causal requirement from RB,

showing how the arrival time (e.g. group delay) of the signal depends on θ. Phase delays tφ about

the quadratic are allowed: tφ = −φ(ω)/ω. Phase delays are most prominent when F̃ 6= 1, θ 6= θC,

and when the LPM effect is strong. See Appendix Sec. 7.2 for further detail.
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Figure 3: Contours of êθ · E(t), for a cascade energy of 1000 PeV. (a) R=1000 m, lateral ICD width of 5 cm. (b)

R=1000 m, lateral ICD width of 10 cm. (c) R=200 m, lateral ICD width of 5 cm. (d) R=200 m, lateral ICD width

of 10 cm. The LPM effect has been taken into account. See text for details.

The fields are shown for R = 200 m and 1000 m, (
√

2πρ0)−1 = 5 cm and 10 cm in Fig. 3. The

causality requirement from RB leads to off-cone regions have a higher effective velocity. A larger
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R value leads to wider separation in arrival times, as these off-cone modes have longer to outpace

the other modes (earlier times correspond to more negative retarded times).

An enticing implication of the effective velocity variation is that the degeneracy between a low-

energy event interacting close to the observer, and a high-energy event interacting correspondingly

farther from the observer would be broken. Recall that Ẽ ∝ R−1 in the far-field. An event with

R = 100 m and EC = 10 PeV would have the same amplitude as an event with R = 1000 m and

EC = 100 PeV, neglecting secondary effects like ice absorption. The temporal signature shown by

the quadratics in Fig. 3 would be different in the two cases.

From Eq. 12, the field Ẽ has both êr and êθ components. For the extreme Fraunhofer limit, as

η → 0, the ratio of the amplitudes of these components is independent of frequency:

êr · Ẽ
êθ · Ẽ

= −
(

cos θ − cos θC
sin θ

)
(33)

Equation 33 shows that the êr-component of E(t) is positive above the Cherenkov angle, and

negative below it. Since the êr · E(t) = 0 at θC , the maximum in the êr-component is always at

some angle θ 6= θC . The contour graphs of Fig. 4 represent the êr-component of the same fields

as Fig. 3. Because êr · Ẽ < êθ · Ẽ, the Askaryan field is usually given with a pure êθ-polarization.

Though the êr-component is small compared to the êθ-component, the code does not neglect it.

The polarization ratio (Eq. 33) is both complex, and frequency-dependent if η 6= 0.

4. Time-Domain Properties at the Cherenkov Angle

The analytic RB+LPM+F̃ (ω, θ) model is derived in the time-domain for limiting cases, and

parameters from the semi-analytic treatment in Ref. [31] are derived analytically. The authors of

[46] provide a similar formula for F̃ (ω), but resort to MC techniques to fit that formula to MC

results. The authors of [45] made the wrong choice for the form of the ICD (see Sec. 3.4.2).

Two cases are considered: F̃ = 1, followed by F̃ (ω, θ) 6= 1. The limiting frequency of the former,

ωC, is governed by coherence. The latter has two limiting frequencies, ωC and ωCF, which leads

to an asymmetry in the vector potential, and therefore, asymmetry in Ẽ. The SI units of terms

like RẼ in the Fourier domain are [V/Hz], while they are just [V] for RE in the time-domain. The

overall scale of the field is not relevant in this section, so the unit of frequency is left as [Hz], rather

than [MHz]. In each derivation, the viewing angle is θ = θC.
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Figure 4: Contours of êr · E(t), for a cascade energy of 1000 PeV. (a) R=1000 m, lateral ICD width of 5 cm. (b)

R=1000 m, lateral ICD width of 10 cm. (c) R=200 m, lateral ICD width of 5 cm. (c) R=200 m, lateral ICD width

of 10 cm. In all cases, the gray dashed line represents the causality requirement. See text for details.

4.1. The limit η < 1, F̃ (ω, θC) = 1

Recall from Eq. 10 of Sec. 3.2 that the vector-form of the on-cone field from the RB formalism

takes the form:

RẼ(ω, θC)

[V/Hz]
= − iωE0 sin θCe

iωR/c

(1− iη)1/2
êθ (34)

Let Ê0 = E0 sin θCêθ, and define ωC from η: η = ω/ωC. Equation 34 may be approximated to

first order in the limit η < 1, or ω < ωC, equivalent to requiring λR & 5a2. Using the definition of
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η, νC = ωC/(2π) is

νC =
cR

2πa2 sin2 θC
(35)

Applying the given limit to Eq. 34, and taking the inverse Fourier transform, yields

RE(tr, θC) ≈ iωCÊ0

π

d

dtr

∫ ∞
−∞

dω
e−itrω

ω + 2iωC
(36)

The sign convention in the exponential in Eq. 36 is chosen to remain consistent with the RB

formalism. The integral may be performed using the Cauchy integral formula, provided that the

numerator is analytic (exp(−iωtr) obeys the Cauchy-Riemann equations).

Contour integration of Eq. 36 requires a contour C that satisfies Jordan’s lemma and includes

all ω ∈ Re{ω}. For the tr > 0 case, the integral converges along the contour defined by the infinite

lower semi-circle because the magnitude of the numerator decreases like exp(Im{ω}). Note that

this is a negatively-oriented contour. For the case tr < 0, use the fact that Fω(x(−t)) = X̃(−ω), so

x(−t) = F−1ω (X̃(−ω)), where Fω(x) = X̃(ω) is the Fourier transform of a function x(t). The final

solution is piecewise:

RE(tr, θC)

[V]
≈ 4Ê0ω

2
C

exp(2ωCtr) tr ≤ 0

− exp(−2ωCtr) tr > 0

(37)

MC calculations show the transition at tr = 0 to be smooth [33]. Equation 37 has a characteristic

width of 1/ωC = 1/(2πνC), implying that the pulse-width is controlled by coherence, in the absence

of a form factor. Figure 5 shows νC versus the observer distance R and the shower width a.

Under the Lorentz gauge condition for Maxwell’s equations, in the absence of static potentials,

the negative derivative of the vector potential yields the electric field: −∂A/∂t = E. Using Eq. 37,

the vector potential is

RA(tr, θC)

[V · s]
≈ −2Ê0ωC

exp(2ωCtr) tr ≤ 0

exp(−2ωCtr) tr > 0

(38)

Equation 16 of [31] is the vector potential at θ = θC:

RA(tr, θC)

[V · s]
= −E′0 sin(θC)êθ

(
exp(−2|tr|/x0) + (1 + x1|tr|)−x2

)
(39)
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Figure 5: A contour plot of log10 νC, for a parameter space relevant for ground-based radio-Askaryan detectors.

Eq. 39 is a formula that is used in MC by ARA/ARIANNA [28] [33] [49], corresponding to a

fit to MC similar to ZHS. By comparing Eqs. 38 and 39, a natural, theoretical explanation of the

fit parameters in [31] arises, albeit from a special case: F̃ = 1, and x0 = 1/(ωC), with x2 � 1, or

x1 ∼ 0. Thus, the result from [31] has been derived from first principles, rather than fitting to MC.

The fits in Ref. [31] have x2 ≈ x1 ≈ 3. The fact that x1 and x2 are not relevant to Eq.

38 is precisely because stipulating that F̃ (ω, θC) = 1 leaves the spectral limiting to νC rather

than F̃ (ω, θ). Such a scenario can be important when dealing with observations of cascades with

R = O(100) m, under the influence of the LPM effect. In this case, only a small fraction of the

shower excess profile is within ∆zcoh, and νC cuts off the spectrum. Another example in which

spectral limiting is due to νC, rather than F̃ (ω, θ), is when the dielectric medium is denser than ice.

The Askaryan spectra extends to ≈ O(10) GHz at θ = θC in salt, for example [50]. Higher density

leads to a more compact ICD, suppressing the effect of F̃ (ω, θ). Figure 5 shows a parameter space

for νC relevant to ARA/ARIANNA.

The result x0 = 1/(ωC) also has a useful physical analogy for the shower width, a. Let the

signal propagation time be T , such that (to first order) R = cT/n. Equation 40 then relates the
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pulse width x0 from Eq. 39 to the shower width a:

x0 =

(
a sin θC

c

)(
a sin θC
R

)
= T

(
a sin θC√

nR

)2

(40)

Equation 40 demonstrates that the pulse width is a fraction of the propagation time T , and

proportional to (a/R)2.

4.2. The limit η < 1, σ < 1, F̃ (ω, θC) 6= 1

Askaryan radiation from cascades experiences further low-pass filtering from F̃ (ω, θ) 6= 1 (Sec.

3.4). The parameter σ can be used to define a limiting frequency: σ = ω/ωCF, similar to η = ω/ωC.

The electric field of Eq. 34, combined with the form factor F̃ (ω, θC) of Eq. 26, is

RẼ(ω, θC)

[V/Hz]
= −F̃ (ω, θ)

iωE0 sin θCe
iωR/c

(1− iω/ωC)1/2
êθ = − iωE0 sin θCe

iωR/c

(1− iω/ωC)1/2(1 + (ω/ωCF)2)3/2
êθ (41)

In the limit σ < 1, and η < 1, Eq. 41 may be approximated as shown in Eq. 42, using

tr = t−R/c, and ω0 =
√

2/3 ωCF.

RE(tr, θC)

[V]
≈ iω2

0ωC

π
Ê0

d

dtr

∮
dω

e−itrω

(ω + 2iωC)(ω + iω0)(ω − iω0)
(42)

There are two poles in the lower-half complex plane, and one in the upper-half plane. If tr > 0,

the contour integral around the lower infinite semi-circle converges because the numerator ap-

proaches zero exponentially as Im{ω} → −∞. Conversely for tr < 0, the contour integral converges

along the upper infinite semi-circle. The final field is given by Eq. 43, to first-order in ε, with

ε = ω0/ωC.

RE(tr, θC)

[V]
≈ Ê0ω

2
CF

3

(1− 1
2ε) exp(ω0tr) tr ≤ 0

− exp(−ω0tr) + 2 exp(−2ωCtr) tr > 0

(43)

Consulting Fig. 5 reveals regions of parameter space where ωC ≤ 1 GHz. Consulting Eq. 23

and Eq. 35 shows that ε < 1 is typical for cascades with a ≤ O(1− 10) m. The relative strengths

of ωC and ωCF =
√

3/2ω0 are shown in Fig. 6, versus the longitudinal and lateral cascade widths.
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Figure 6: A contour plot of ωCF/ωC = νCF/νC, for a parameter space relevant for ground-based radio-Askaryan

detectors.

The vector potential corresponding to Eq. 43 is

RA(tr, θC)

[V · s]
≈ − Ê0ωCF√

6

(1− 1
2ε) exp(ω0tr) tr ≤ 0

exp(−ω0tr)− ε exp(−2ωCtr) tr > 0

(44)

Equations 43 and 44 show that the field remains bipolar but asymmetric, and asymmetric in

time, from the interplay between coherence and the form factor. The pulse width is enhanced due

to the presence of two different limiting frequencies, ω0 =
√

2/3ωCF, and ωC. Equation 45 defines

a parameter showing the relative importance of the two limiting frequencies:

ε′ = ωCF/ωC = (
√

2πρ0ρ)
( a
R

)2
(45)

Fig. 6 is a contour graph of ε′ in a parameter space relevant for ARA/ARIANNA. The first

term in parentheses in Eq. 45 represents the relative importance of F̃ (ω, θ). The second term in

parentheses is the ratio of the longitudinal cascade width to the observer distance, represents the

quality of the Fraunhofer limit.
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4.3. Generalization of Eq. 41

The purpose of Eq. 32 is to account for excess charge at lateral distances greater than one

Molière radius. Consequently, Eq. 41 may be generalized to

RẼ(ω, θC)

[V/Hz]
= −

N∑
j=0

αjiωÊ0e
iωR/c

(1− iω/ωC)1/2(1 + (ω/ωCF,j)2)3/2
(46)

Making the same approximations leading up to Eq. 42, and exchanging the order of summation

and integration, yields

RE(tr, θC)

[V]
≈

N∑
j=0

αj

iωCω
2
0,j

π
Ê0

d

dtr

∮
dω

e−itrω

(ω + 2iωC)(ω + iω0,j)(ω − iω0,j)
(47)

The summation terms of Eq. 47 are equal to Eq. 43, with the substitution ω0 → ω0,j:

RE(tr, θC)

[V]
≈

N∑
j=0

αj

Ê0ω
2
0,j

2

(1− 1
2
ω0,j

ωC
) exp(ω0,jtr) tr ≤ 0

− exp(−ω0,jtr) + 2 exp(−2ωCtr) tr > 0

(48)

5. Summary

The Askaryan fields for a neutrino-induced high-energy cascade have been presented, accounting

for the LPM effect, and F̃ (ω, θ). The fully analytic calculations and associated code require no a

priori MC analysis, making them computationally efficient and accurate. The cascade model has

been verified independently, up to an energy of 0.1 EeV, and the lateral shower structure has been

shown to be constant versus depth within the dielectric medium, near depths where the radiation is

maximal. The code computes the entire field, for any frequencies, times, or viewing angles chosen

by the user. Table 1 contains brief summary of the results and tools presented in this work.

The LPM effect is found to modify low-frequency emission, to suppress high-frequency emis-

sion, and to narrow the Cherenkov cone. The F̃ (ω, θ) function smooths the field in contours of

field strength versus time and viewing angle. F̃ (ω) is similar to a two-pole, low-pass filter, with

the limiting frequency determined by cascade Molière radius. The θ-dependence in the form of

F̃ (ω, θ) implies that the filtered radiation depends on the laterally-projected wavevector. Finally,

the field shows interesting causal structure that could serve as a discrimination technique between

the distance R and the cascade energy, for in situ detectors such as ARA and ARIANNA.
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Effect Eq./Fig. Sec.

Complete model êθ · Ẽ(ω, θ) Fig. 3 Sec. 3.5

Complete model êr · Ẽ(ω, θ) Fig. 4 Sec. 3.5

Cascade Form Factor, F̃ (ω, θ) Eq. 26 Sec. 3.4.2

E(t, θC), F̃ (ω, θ) = 1, η < 1, Eq. 37 Sec. 4.1

E(t, θC), F̃ (ω, θ) 6= 1, η < 1, Eq. 43 Sec. 4.2

ωCF/ωC Figure of Merit Eq. 45 Sec. 4.2

Table 1: A summary of specific results. Figures 3 and 4 may be reproduced using the open-source code:

https://github.com/918particle/AskaryanModule.

Time-domain expressions were derived for the fields by computing the inverse Fourier transform

of the RB model, under specific frequency limits. Future work will focus exclusively on the time

domain, for viewing angles θ 6= θC, and frequencies ω ≈ ωC and ω ≈ ωCF. Having theoretical

time-domain signals on hand facilitates Askaryan-based neutrino searches by allowing thermal fluc-

tuations to be rejected on the basis of non-correlation with theoretical templates. Currently, in

situ Askaryan-based detectors are limited by thermal noise. Rejecting the thermal noise in favour

of neutrino signals is an exercise in the mathematical analysis of thermal fluctuations [51]. Armed

with a firm theoretical understanding of the Askaryan effect, this challenge is made easier.
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7. Appendix

7.1. Causal Features and Poles of Askaryan Radiation

The complex pole-structure of the various models each demonstrate how the models treat the

issue of causality. The E-field of ZHS, on-cone in Eq. 52 takes the form

RẼ

[V/Hz]
= −E0ω

2
0

iω

(ω + iω0)(ω − iω0)
êθ (49)

Figure 16 of ZHS shows that the E-field phase is ∼ 90◦ below 1 GHz, or a phase factor of

exp(iπ/2) = i. The overall minus sign in Eq. 49 is just a convention. Taking the inverse Fourier

transform, the time-domain form of the field at the Cherenkov angle may be written

RE(t)

[V]
= ω2

0E0
d

dt

∫ ∞
−∞

e−iωt

(ω + iω0)(ω − iω0)
dω (50)

The integral converges via Jordan’s lemma if the contour is the infinite upper semi-circle for

t < 0, and, for t > 0, the infinite lower semi-circle. There is an overall minus sign from the clockwise

contour. The result is

RE(t)

[V]
= ω2

0E0êθ

exp(ω0t) t ≤ 0

− exp(−ω0t) t > 0

(51)

The existence poles above and below the real line is deemed a causality violation by RB. Phys-

ically, the field changes overall sign when the angular acceleration of the charge relative to the

observer changes sign. Feynman’s formula [30] states that the field from an accelerating charge

goes like E ∝ sgn(1− nû · ~β)û× θ̈, where ~β is the velocity of the charge, and û is a unit vector at

the charge location in the direction of the observer. E changes sign as the charge crosses the plane

in which R is minimized. The quantity θ̈ increases rapidly, until the plane crossing, after which it

decreases rapidly.

From Eq. 50 F̃ZHS(ω) ∝ (ω+iω0)−1(ω−iω0)−1. Treating t > 0 and t < 0 separately, the inverse

Fourier transform of F̃ZHS(ω) with respect to the coordinate ρ′ yields f(x′) ∝ exp(−ρ′). Therefore, a

logical inference is that the full, 3D ICD responsible for F̃ (ω, θ) is distributed exponentially. Geant4

simulations show this to be correct in Sec. 7.3.
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7.2. Spectral, Phase, and Angular Dependence

For cases in which EC < ELPM, the associated code agrees with the ZHS parameterization.

Equations 10-13, via the associated code, are compared in Figs. 7-8 to Eqs. 52-53, which are Eqs.

20-21 from ZHS, with ∆θ = 2.4◦(ν0/ν), and ν0 = 0.5 GHz.

R|Ẽ(ω, θ = θC)|[
V

MHz

] = 1.1× 10−7
E0

[TeV]

(
ν

ν0

)
1

1 + (ν/ν0)2
êθ (52)

Ẽ(ω, θ) = Ẽ(ω, θ = θC) exp

[
−1

2

(
θ − θC

∆θ

)2
]
êθ (53)

In Fig. 7 (left), the spectra are scaled by R[m]/EC[TeV], where EC is the cascade energy in

TeV. In Fig. 7 (right), the angular dependence of RB and ZHS is compared. The factor F̃ in Fig.

7 corresponds to a shower with a lateral ICD of exponential form, with a width of ∼ 5 cm. The

cone-width is also inversely proportional to a in the RB model - an important detail that accounts

for cone-width narrowing under the influence of the LPM effect.
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Figure 7: (a) The spectrum from ZHS (dashed lines) and |êθ · Ẽ(ω)| from the code (solid lines), scaled by R/EC.

The cascade width is a = 1.5 m, and R = 1000 m and F̃ 6= 1. (b) The angular dependence of the ZHS fits (dashed

lines), compared to this work (solid lines).

The phase produced by the associated code is shown in Fig. 8, and compared to the ZHS

result at the Cherenkov angle. The phases agree, up to frequencies at which the cone-width has

attenuated the radiated power. Above these frequencies, the group delay (the slope of the phase)

grows exponentially.
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The spectral and angular dependence under the influence of the LPM effect and F̃ (ω) is shown

in Fig. 9, revealing three effects. First, a low-frequency enhancement is caused by the cascade

elongation, relative to ZHS. The effect is physical, as long as η . 1, so that the stretched a

is still . ∆zcoh. Second, a high-frequency attenuation in the spectrum is expected if ka � 1:

W(η, θ) ∝ exp(−(ka)2) in Eq. 13. Third, cone-width narrowing seen in Fig. 9 (right) follows from

RB, where the cone-width is inversely proportional to a, and a has been stretched via the LPM

effect.

7.3. Numerical Study of the Excess Charge Distribution

Geant4 [53] [54] is used to derive numbers for
√

2πρ0, and those results are checked with Eqs.

17-19. Refs. [46, 47, 48] are other works that used GEANT/Pythia to calculate Askaryan radiation

properties. The GEANT4 high-energy electromagnetic option-1 physics list was used, with a MC

threshold of 1 MeV, e± primaries, and ice of density 0.917 g/cm3 and at a temperature of 240

K. Although the LPM effect is important primarily for electromagnetic cascades, F̃ (ω, θ) does not

depend on a, so it is also valid for hadronic cascades.

CPU memory constraints forbid accounting for all tracks, so a pre-shower/sub-shower approach

is taken to access more memory. A pre-shower drops all particles with energy below 0.1 PeV. The

trajectory, position and type of the pre-shower particles generated by the primary are recorded and

sent to separate CPUs. Each particle in the pre-shower then becomes an independent cascade, with

a second MC threshold of 1 MeV.

The lateral ICD is shown in Fig. 10 (a). The results follow ∝ exp(−
√

2πρ0ρ
′) in the range
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Figure 8: Phase of the Askaryan signal versus frequency. The dashed line is the ZHS result, at the Cherenkov angle.

The code produces the solid lines at the given viewing angles.
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Figure 9: (Left): |êθ · Ẽ(ω)|, for EC = 10 PeV, R = 1000 m, and θ = 57◦. The dashed line is the ZHS fit to Monte

Carlo, and the solid line is the result from the associated code, with the LPM effect applied. (Right): The angular

dependence of the same |êθ · Ẽ(ω)| as the solid line at (left), with the LPM effect applied (gray), and without it

(black), at ν = 300 MHz.

ρ′ = [0, ρ1/dice] (0-113 mm in ice, with ρ1 = 10.4 g cm−2 and dice = 0.917 g cm−3). The gray data

corresponds to Geant4 tracks inside a 100 PeV cascade, 25± 0.01 ns from the beginning of the first

Geant4 interaction. The fit diverges only at radii where the radiation is ∼ 1 % of the total signal.

The results for
√

2πρ0 are shown in Fig. 10 (b), averaged over 10 cascades with EC = 100 PeV.

Each point contains tracks existing within 10 ps of the time on the x-axis. Early in the cascade, the

particles have not yet diffused laterally, implying a higher value of
√

2πρ0. The dashed horizontal

line represents the average between 15-35 ns, when lateral diffusion saturates.

The ICD per unit area, vs. Molière radius, is shown in Fig. 11 (a), plotted along with Eq. 19.

Figure 11 (b) shows the fitted shower age s as a function of time after the first interaction. Eq. 19

was fit to the MC data sets at each time bin, with s as a free parameter. The results match the

definition of s, from which the gray dashed line in Fig. 11 is derived.

Figure 12a matches Eq. 17 to MC data, neglecting photons, with a 1 MeV MC threshold. The

Gaussian form is evident [55], justifying the RB saddle-point expansion. The ICD as a function of z′

is shown in Fig. 12b. The width of f(x′) versus z′ is proportional to the width of the time-window

(10 ps), justifying its approximation as a δ-function in f(x′).

The parameter nmax in RB is the number of excess negative charges. The fractional excess

charge is ∆q = (Ne− − Ne+)/(Ne− + Ne+), so nmax = N∆q. The MC shows that ∆q to is linear

with depth. The y-intercept is sensitive to the MC threshold, but the slope is not. The associated
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Figure 10: (a) Ne− −Ne+ , versus ρ′ at 25 ns into a 100 PeV shower (gray points). The slope of the exponential is
√
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Figure 11: (a) The charged ICD density, at 10 ns and 25 ns after the first interaction. The solid lines are fits of

Equation 19 to the points with the shower age, s, as free parameter. (b) The fitted shower age, s, versus time since

first interaction. The dashed line is the theoretical expectation.
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Figure 12: (a) ntot versus z′, for a 100 PeV cascade. (b) The ICD at 25± 0.01 ns after the first interaction. (c) The

fractional negative charge excess of a 100 PeV shower, with a 5 MeV MC threshold from Geant4. The solid line is

the ZHS result with a 5 MeV MC threshold, and the dashed line is a linear fit to the OSC results.

code includes the linear dependence of ∆q on depth by sampling the linear fit at zmax. Figure 12c

shows ∆q and that of ZHS.

29



References

[1] M. G. Aartsen, et al., First observation of pev-energy neutrinos with icecube, Phys. Rev. Lett.

111 (2013) 021103. doi:10.1103/PhysRevLett.111.021103.

URL http://link.aps.org/doi/10.1103/PhysRevLett.111.021103

[2] O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz, G. Sigl, Ultrahigh-energy neutrino fluxes and

their constraints, Phys. Rev. D 66 (2002) 063004. doi:10.1103/PhysRevD.66.063004.

URL http://link.aps.org/doi/10.1103/PhysRevD.66.063004

[3] K. Kotera, D. Allard, A. Olinto, Cosmogenic neutrinos: parameter space and detectabilty from

pev to zev, Journal of Cosmology and Astroparticle Physics 2010 (10) (2010) 013.

URL http://stacks.iop.org/1475-7516/2010/i=10/a=013

[4] J. G. Learned, K. Manheim, High-energy neutrino astrophysics, Nuclear and Particle Science

50 (2000) 679–749. doi:10.1146/annurev.nucl.50.1.679.

[5] K. Greisen, End to the cosmic-ray spectrum?, Phys. Rev. Lett. 16 (1966) 748–750. doi:

10.1103/PhysRevLett.16.748.

URL http://link.aps.org/doi/10.1103/PhysRevLett.16.748

[6] G. Zatsepin, V. Kuzmin, Pis ma zh. eksp. teor. fiz. 4,114 (1966)[jetp. lett. 4, 78 (1966)]. v.

berezinsky and g. zatsepin, Phys. Lett. B 8 (1969) 423.

[7] E. Waxman, J. Bahcall, High energy neutrinos from astrophysical sources: An upper bound,

Phys. Rev. D 59 (1998) 023002. doi:10.1103/PhysRevD.59.023002.

[8] R. Engel, D. Seckel, T. Stanev, Neutrinos from propagation of ultrahigh energy protons, Phys.

Rev. D 64 (2001) 093010. doi:10.1103/PhysRevD.64.093010.

[9] K. Murase, M. Ahlers, B. C. Lacki, Testing the hadronuclear origin of pev neutrinos observed

with icecube, Phys. Rev. D 88 (2013) 121301. doi:10.1103/PhysRevD.88.121301.

URL http://link.aps.org/doi/10.1103/PhysRevD.88.121301

[10] J. C. Joshi, W. Winter, N. Gupta, How many of the observed neutrino events can be described

by cosmic ray interactions in the milky way?, Monthly Notices of the Royal Astronomical

Society 439 (4) (2014) 3414–3419. doi:10.1093/mnras/stu189.

30

http://link.aps.org/doi/10.1103/PhysRevLett.111.021103
http://dx.doi.org/10.1103/PhysRevLett.111.021103
http://link.aps.org/doi/10.1103/PhysRevLett.111.021103
http://link.aps.org/doi/10.1103/PhysRevD.66.063004
http://link.aps.org/doi/10.1103/PhysRevD.66.063004
http://dx.doi.org/10.1103/PhysRevD.66.063004
http://link.aps.org/doi/10.1103/PhysRevD.66.063004
http://stacks.iop.org/1475-7516/2010/i=10/a=013
http://stacks.iop.org/1475-7516/2010/i=10/a=013
http://stacks.iop.org/1475-7516/2010/i=10/a=013
http://dx.doi.org/10.1146/annurev.nucl.50.1.679
http://link.aps.org/doi/10.1103/PhysRevLett.16.748
http://dx.doi.org/10.1103/PhysRevLett.16.748
http://dx.doi.org/10.1103/PhysRevLett.16.748
http://link.aps.org/doi/10.1103/PhysRevLett.16.748
http://dx.doi.org/10.1103/PhysRevD.59.023002
http://dx.doi.org/10.1103/PhysRevD.64.093010
http://link.aps.org/doi/10.1103/PhysRevD.88.121301
http://link.aps.org/doi/10.1103/PhysRevD.88.121301
http://dx.doi.org/10.1103/PhysRevD.88.121301
http://link.aps.org/doi/10.1103/PhysRevD.88.121301
http://dx.doi.org/10.1093/mnras/stu189


[11] A. Connolly, R. S. Thorne, D. Waters, Calculation of high energy neutrino-nucleon cross sec-

tions and uncertainties using the martin-stirling-thorne-watt parton distribution functions and

implications for future experiments, Phys. Rev. D 83 (2011) 113009. doi:10.1103/PhysRevD.

83.113009.

URL http://link.aps.org/doi/10.1103/PhysRevD.83.113009

[12] P. W. Gorham, A. Connolly, et al., Implications of ultrahigh energy neutrino flux constraints

for lorentz-invariance violating cosmogenic neutrinos, Phys. Rev. D 86 (2012) 103006. doi:

10.1103/PhysRevD.86.103006.

URL http://link.aps.org/doi/10.1103/PhysRevD.86.103006

[13] M. Ahlers, L. Anchordoqui, M. GonzalezGarcia, F. Halzen, S. Sarkar, {GZK} neutrinos after

the fermi-lat diffuse photon flux measurement, Astroparticle Physics 34 (2) (2010) 106 – 115.

doi:http://dx.doi.org/10.1016/j.astropartphys.2010.06.003.

URL http://www.sciencedirect.com/science/article/pii/S0927650510001155

[14] K. Murase, D. Guetta, M. Ahlers, Hidden cosmic-ray accelerators as an origin of tev-pev cosmic

neutrinos, Phys. Rev. Lett. 116 (2016) 071101. doi:10.1103/PhysRevLett.116.071101.

URL http://link.aps.org/doi/10.1103/PhysRevLett.116.071101

[15] G. Askaryan, Excess negative charge of electron-photon shower and the coherent radiation

originating from it. radiorecording of showers under the ground and on the moon, J. Phys.

Soc. Japan 17 (Suppl A).

[16] D. Saltzberg, et al., Observation of the askaryan effect: Coherent microwave cherenkov emission

from charge asymmetry in high-energy particle cascades, Phys. Rev. Lett. 86 (2001) 2802–2805.

doi:10.1103/PhysRevLett.86.2802.

URL http://link.aps.org/doi/10.1103/PhysRevLett.86.2802

[17] P. W. Gorham, et al., Observations of the askaryan effect in ice, Phys. Rev. Lett. 99 (2007)

171101. doi:10.1103/PhysRevLett.99.171101.

URL http://link.aps.org/doi/10.1103/PhysRevLett.99.171101

[18] J. Hanson, Ross Ice Shelf Thickness, Radio-frequency Attenuation and Reflectivity: Impli-

cations for the ARIANNA UHE Neutrino Detector, International Cosmic Ray Conference 4

(2011) 169. doi:10.7529/ICRC2011/V04/0340.

31

http://link.aps.org/doi/10.1103/PhysRevD.83.113009
http://link.aps.org/doi/10.1103/PhysRevD.83.113009
http://link.aps.org/doi/10.1103/PhysRevD.83.113009
http://dx.doi.org/10.1103/PhysRevD.83.113009
http://dx.doi.org/10.1103/PhysRevD.83.113009
http://link.aps.org/doi/10.1103/PhysRevD.83.113009
http://link.aps.org/doi/10.1103/PhysRevD.86.103006
http://link.aps.org/doi/10.1103/PhysRevD.86.103006
http://dx.doi.org/10.1103/PhysRevD.86.103006
http://dx.doi.org/10.1103/PhysRevD.86.103006
http://link.aps.org/doi/10.1103/PhysRevD.86.103006
http://www.sciencedirect.com/science/article/pii/S0927650510001155
http://www.sciencedirect.com/science/article/pii/S0927650510001155
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2010.06.003
http://www.sciencedirect.com/science/article/pii/S0927650510001155
http://link.aps.org/doi/10.1103/PhysRevLett.116.071101
http://link.aps.org/doi/10.1103/PhysRevLett.116.071101
http://dx.doi.org/10.1103/PhysRevLett.116.071101
http://link.aps.org/doi/10.1103/PhysRevLett.116.071101
http://link.aps.org/doi/10.1103/PhysRevLett.86.2802
http://link.aps.org/doi/10.1103/PhysRevLett.86.2802
http://dx.doi.org/10.1103/PhysRevLett.86.2802
http://link.aps.org/doi/10.1103/PhysRevLett.86.2802
http://link.aps.org/doi/10.1103/PhysRevLett.99.171101
http://dx.doi.org/10.1103/PhysRevLett.99.171101
http://link.aps.org/doi/10.1103/PhysRevLett.99.171101
http://dx.doi.org/10.7529/ICRC2011/V04/0340


[19] J. Hanson, et al., Radar absorption, basal reflection, thickness and polarization measurements

from the ross ice shelf, antarctica, Jour. Glac. 61 (227) (2015) 438–446.

[20] D. Besson, et al., In situ radioglaciological measurements near taylor dome, antarctica and im-

plications for ultra-high energy (uhe) neutrino astronomy, Astroparticle Physics 29 (2) (2008)

130 – 157. doi:http://dx.doi.org/10.1016/j.astropartphys.2007.12.004.

URL http://www.sciencedirect.com/science/article/pii/S0927650507001831

[21] I. Kravchenko, S. Hussain, D. Seckel, D. Besson, E. Fensholt, J. Ralston, J. Taylor, K. Ratzlaff,

R. Young, Updated results from the rice experiment and future prospects for ultra-high energy

neutrino detection at the south pole, Phys. Rev. D 85 (2012) 062004. doi:10.1103/PhysRevD.

85.062004.

URL http://link.aps.org/doi/10.1103/PhysRevD.85.062004

[22] P. W. Gorham, et al., Observational constraints on the ultrahigh energy cosmic neutrino

flux from the second flight of the anita experiment, Phys. Rev. D 82 (2010) 022004. doi:

10.1103/PhysRevD.82.022004.

[23] P. Gorham, et al., The antarctic impulsive transient antenna ultra-high energy neutrino detec-

tor: Design, performance, and sensitivity for the 20062007 balloon flight, Astroparticle Physics

32 (1) (2009) 10 – 41. doi:http://dx.doi.org/10.1016/j.astropartphys.2009.05.003.

URL http://www.sciencedirect.com/science/article/pii/S0927650509000838

[24] S. Barwick, et al., A first search for cosmogenic neutrinos with the {ARIANNA} hexagonal

radio array, Astroparticle Physics 70 (2015) 12 – 26. doi:http://dx.doi.org/10.1016/j.

astropartphys.2015.04.002.

[25] S. Barwick, et al., Time-domain response of the {ARIANNA} detector, Astroparticle Physics

62 (2015) 139 – 151. doi:http://dx.doi.org/10.1016/j.astropartphys.2014.09.002.

[26] S. W. Barwick, E. C. Berg, D. Z. Besson, T. Duffin, J. C. Hanson, S. R. Klein, S. A. Kleinfelder,

K. Ratzlaff, C. Reed, M. Roumi, T. Stezelberger, J. Tatar, J. Walker, R. Young, L. Zou, Design

and performance of the arianna hra-3 neutrino detector systems, IEEE Transactions on Nuclear

Science 62 (5) (2015) 2202–2215. doi:10.1109/TNS.2015.2468182.

32

http://www.sciencedirect.com/science/article/pii/S0927650507001831
http://www.sciencedirect.com/science/article/pii/S0927650507001831
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2007.12.004
http://www.sciencedirect.com/science/article/pii/S0927650507001831
http://link.aps.org/doi/10.1103/PhysRevD.85.062004
http://link.aps.org/doi/10.1103/PhysRevD.85.062004
http://dx.doi.org/10.1103/PhysRevD.85.062004
http://dx.doi.org/10.1103/PhysRevD.85.062004
http://link.aps.org/doi/10.1103/PhysRevD.85.062004
http://dx.doi.org/10.1103/PhysRevD.82.022004
http://dx.doi.org/10.1103/PhysRevD.82.022004
http://www.sciencedirect.com/science/article/pii/S0927650509000838
http://www.sciencedirect.com/science/article/pii/S0927650509000838
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2009.05.003
http://www.sciencedirect.com/science/article/pii/S0927650509000838
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2015.04.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2015.04.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.astropartphys.2014.09.002
http://dx.doi.org/10.1109/TNS.2015.2468182


[27] P. Allison, et al., First constraints on the ultra-high energy neutrino flux from a prototype

station of the askaryan radio array, Astroparticle Physics 70 (2015) 62 – 80. doi:http://dx.

doi.org/10.1016/j.astropartphys.2015.04.006.

[28] P. Allison, et al., Design and initial performance of the askaryan radio array prototype eev

neutrino detector at the south pole, Astroparticle Physics 35 (7) (2012) 457 – 477. doi:http:

//dx.doi.org/10.1016/j.astropartphys.2011.11.010.

URL http://www.sciencedirect.com/science/article/pii/S092765051100209X

[29] P. Gorham, F. Baginski, P. Allison, K. Liewer, C. Miki, B. Hill, G. Varner, The exavolt antenna:

A large-aperture, balloon-embedded antenna for ultra-high energy particle detection, Astropar-

ticle Physics 35 (5) (2011) 242 – 256. doi:http://dx.doi.org/10.1016/j.astropartphys.

2011.08.004.

URL http://www.sciencedirect.com/science/article/pii/S0927650511001629

[30] E. Zas, F. Halzen, T. Stanev, Electromagnetic pulses from high-energy showers: Implications

for neutrino detection, Phys. Rev. D 45 (1992) 362–376. doi:10.1103/PhysRevD.45.362.
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