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Abstract

In this note, I derive the standard model for the index of refraction of Antarctic ice, as a
function of ice depth. The model provides a good fit to the data, but does not account for
small-scale fluctuations in snow density in the upper regions of the firn. The standard model
implies curved paths for radio pulses. In specific situations, Fermat’s principle implies that
the shadowing effect should occur. Finally, the firn data suggests that although shadowing
is possible, a more complete model should include surface propagation due to ray-trapping
between local snow layers.

1 A Derivation of the Firn Model

Let the region of firn be described by N blocks labelled by j, with varying density ρj. Let the
snow surface correspond to j = N , z = 0, and the beginning of solid ice (the bottom of the firn)
correspond to j = 0, z = h. Each block has a height ∆z, and a volume v = A∆z. Consider the
normal force on block j:

Fj = ρjvg +
N∑

i=j+1

ρivg (1)

The normal force on block j + 1 is

Fj+1 = ρj+1vg +
N∑

i=j+2

ρivg (2)

Subtracting the normal forces gives

Fj+1 − Fj

gv∆z
=
ρj+1 − ρj

∆z
+

1

∆z2

(
∆z

N∑
i=j+2

ρi −∆z
N∑

i=j+1

ρi

)
(3)

Taking the limit ∆z → 0 yields

F ′

gv
= ρ′ +

1

dz2

(∫ 0

z2

dzρ(z)−
∫ 0

z1

ρ(z)

)
(4)

F ′

gv
= ρ′ − 1

dz2

∫ z2

z1

dzρ(z) (5)
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In these steps, the height z2 corresponds to block j + 1, and z1 corresponds to block j. Recall
that z1 < z2 < 0. Note also that the derivative of the normal force approaches zero as fast as the
volume element approaches zero, so the left-hand side is a constant. Taking the derivative of both
sides gives

0 = ρ′′ − A

v

(
ρ(z2)− ρ(z1)

dz

)
(6)

ρ′′ =

(
A

v

)
ρ′ (7)

It is given that the density must approach asymptotically a known, constant value. Thus, the
second-order differential equation has a solution with two free parameters, ρ1 and z0, for z < 0:

ρ(z) = ρ0 − ρ1ez/z0 (8)

Using the boundary conditions ρ(0) = ρs (snow) and ρ(z) = ρice for |z| � z0, z < 0, with
∆ρ = ρice − ρs, the final solution is

ρ(z) = ρice −∆ρez/z0 (9)

For dielectric materials like snow and ice, the index of refraction is usually approximated as a
linear equation of density: n(z) ≈ 1 + bρ(z), and this is usually justified through expanding the
Landau-Lifshitz-Looyenga equation (see below). Thus, the index versus depth of the metamor-
phosis from snow to ice follows a function like

n(z) = n0 − n1e
z/z0 (10)

At z = 0, n(0) = ns (snow), and as |z| � z0, for z < 0, n = nice. Letting ∆n = nice − ns, the
index equation becomes

n(z) = nice −∆nez/z0 (11)

2 The Landau-Lifshitz-Looyenga Equation

Let the complex dielectric constants of snow and ice be εi and εs, and the dielectric constant of
their mixture be ε(z). Further, let the two separate dielectrics each have volume fractions vi and
vs, with volume fractions vi + vs = 1, ρ(z) = viρi + vsρs. The Landau-Lifshitz-Looyenga equation
gives

ε(z) =
(
viε

1/3
i + vsε

1/3
s

)3
(12)

Let the real and imaginary parts of dielectric constants follow the notation ε = ε′ + iε′′, and
defined the loss tangent as tan δ = ε′′/ε′. Ice has a loss tangent of order 10−3 at RF frequencies, and
the loss tangent of snow is smaller. To first order in tan δi and u = v2/v1 < 1, with α = (ε′2/ε

′
1)

1/3,
it may be shown that √

<ε(z) = n(z) ≈ v
3/2
i ε

′1/2
i (1 + uα) (13)
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Setting v2 = 0, v1 = 1 (or u = 0) reproduces the expected n =
√
ε′i for pure ice. With

β = 3/2(ρs/ρi), v
3/2
i is approximately

v
3/2
i ≈

(
ρ(z)

ρi

)3/2

(1 + uβ)−1 (14)

Combining equations, and recalling that ε
′1/2
i = nice, the result is

n(z)

nice

≈
(

1 + uα

1 + uβ

)(
ρ(z)

ρi

)3/2

(15)

Expanding to first order about ρ(z)/ρi = 1:

n(z)

nice

≈ −1

2

(
1 + uα

1 + uβ

)
+

3

2

(
1 + uα

1 + uβ

)
ρ(z)

ρi
(16)

Using ns = ε′2s = 1.3, ni = ε′2i = 1.78, ρs = 0.4 g/cc, ρi = 0.917 g/cc, and u = 0.1 as an
example, a linear equation for the index versus density near the firn/ice boundary layer is

n(z)

nice

≈ −0.51 + 1.66ρ(z)[g/cc] (17)

3 Fitting the Firn Model to the Data

Many analyses and derivations have been done to produce the index of refraction versus depth curve
in different locations throughout Antarctica. Figure 1 contains a summary of such measurements.
In the figure, the function n(z) = A−B exp(Cz) is fit to the data points. Where density data was
available, the empirical conversion of n(z) = 1.0 + 0.86ρ(z) has been used.

The value for A in all the fits was restricted to nice = 1.78, from the differential equation
solution to the gravity-density problem. No restriction was placed on the value for B = ∆n,
but note that the results are close to 1.78 − 1.29 = 0.49, where 1.29 is the expected value for ns

(Hanson 2013). Thus, the fits are all measuring ns accurately. The slopes C = z−10 differ across
the Antarctic continent, and are statistically lower at the South Pole compared to other locations.

Table 1 summarizes the results for the fits to the points in the figure. The snow surface index
of refraction is derived from the B parameter, assuming A = nice, and B = ∆n = nice−ns. These
results may be compared to resuts from the upper 2 m (ns = 1.29 ± 0.02), obtained at the Ross
Ice Shelf via multiple tecniques (Hanson 2013). The curves MB#1 and MB#2 refer to two cores
drilled in Moore’s Bay (Ross Ice Shelf) in 2016, and the references for the rest of the data may be
found in the Table.

Ref./Location A = nice B ns C (m−1) z0 (m)
MB#1/Moore’s Bay 1.78 0.46± 0.01 1.32± 0.01 0.029± 0.002 34.5± 2
MB#2/Moore’s Bay 1.78 0.481± 0.007 1.299± 0.007 0.027± 0.001 37± 1

Ebimuna (1983)/Byrd 1.78 0.464± 0.006 1.316± 0.006 0.0244± 0.0004 41± 1
Ebimuna (1983)/Mizuho 1.78 0.423± 0.008 1.357± 0.006 0.027± 0.001 37± 1

RICE (2004)/South Pole 1.78 0.43± 0.02 1.35± 0.02 0.014± 0.001 71± 5
Eisen (2003)/South Pole 1.78 0.48± 0.01 1.3± 0.01 0.020± 0.001 50± 2.5
Gow (xxxx)/South Pole 1.78 0.435± 0.01 1.345± 0.01 0.016± 0.001 62.5± 4
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(z)) (ARIANNA 2016)ρMB #1 (n(z) = 1.0+0.86
A-B exp(Cz), B: 0.46 +/- 0.01, C: 0.029 +/- 0.002

(z)) (ARIANNA 2016)ρMB #2 (n(z) = 1.0+0.86
A-B exp(Cz), B: 0.481 +/- 0.007, C: 0.027 +/- 0.001
Byrd: Ebimuna et al (1983)
A-B exp(Cz), B: 0.464 +/- 0.006, C: 0.0244 +/- 0.0004
Mizuho: Ebimuna et al (1983)
A-B exp(Cz), B: 0.423 +/- 0.008, C: 0.027 +/- 0.001
SP: RICE data (2004)
A-B exp(Cz), B: 0.426 +/- 0.024, C: 0.014 +/- 0.001
SP: Eisen et al (2003)
A-B exp(Cz), B: 0.481 +/- 0.011, C: 0.020 +/- 0.001
SP: Gow et al (xxxx)
A-B exp(Cz), B: 0.435 +/- 0.014, C: 0.016 +/- 0.001
Bulk ice value (n = 1.78)
Surface value (n = 1.29+/-0.02) (Hanson 2013)

Figure 1: A summary of all the n(z) data discovered for various locations in Antarctica, including
Moore’s Bay (MB) and the South Pole. All data points and fit lines that are black correspond to
the South Pole, and the gray points and fit lines correspond to Moore’s Bay, Byrd station, and
Mizuho station.

4 Fermat’s Principle, and Ray-Tracing

A key question for ARA/ARIANNA future designs is the expected path of a radio pulse from an
Askaryan event in firn. Beginn with Fermat’s principle, which states that a ray must traverse the
path that minimizes the travel time. Fermat’s principle is similar to the principle of least-action,
in which a massive particle takes the path of least-resistance (cite Wiki Fermat’s).

δS = 0 (18)

δ

∫ B

A

n(z)(1 + ẏ2)1/2dxdydz =

∫ B

A

L(z, ẏ)dxdydz = 0 (19)

Derivatives indicated by the dot notation are with respect to z, not time. The assumption that
x = ẋ = 0 has been taken without loss of generality. Note that ẏ = dy/dz is unit-less, and ÿ has
units of inverse meters. Using the Euler-Lagrange equations to minimize the variation in the path,
and letting u = ẏ:
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d

dz

(
∂L

∂ẏ

)
−
(
∂L

∂y

)
= 0 (20)

d

dz

(
∂L

∂ẏ

)
= 0 (21)

u̇ = −
(
ṅ

n

)
(u3 + u) (22)

Note that the units are inverse meters on each side of the equation: all factors of u are unit-less,
and ṅ has units of inverse meters. Putting in the model for n(z), the final equation of motion is

u̇ = z−10

(
∆nez/z0

nice −∆nez/z0

)
(u3 + u) (23)

As a check, note the deep ice limit: |z| � z0, z < 0:

u̇ = 0 (24)

The solution to this equation of motion, after solving for z is

z(y) = a+ by (25)

In other words, if the rays are far from the firn, the rays must propagate in straight lines.
For the case of a shallow ray z → 0, propagating initially with a horizontal velocity component
satisfying u3 � u, the main equation of motion reduces to

du

dz
=

(
nice − ns

z0ns

)
u3 (26)

This is a variables-separable differential equation, with a solution

z(y) = − 1

2z0

(
nice − ns

ns

)
y2 − y (27)

Thus, for a very shallow ray, with initial horizontal velocity, the solution predicts shadowing,
where a horizontal ray is eventually bent downward. Note that this does not imply yet that
shadowing should happen in real Antarctic firn over an appreciably short distance, because the
values for nice, ns and z0 have to be inserted. The next least-restrictive approximation for the
shallow depth of the ray is exp z/z0 ≈ 1 + z/z0, rather than z → 0. Let q = ∆n/z0. The full
equation of motion, in this limit, reduces to

du

dz
= z−10

(
∆n+ qz

ns − qz

)
u3 (28)

SKIPPING LIKE, SO MANY STEPS which are saved in notebook and iCloud.
The final solution in this limit is

z(y) =
Q1

8z0
(y − y1)2 −

Q0

Q1

(29)

Note that, in either the limit of z → 0, or exp z/z0 ≈ 1+z/z0, the solutions are quadratic, with
curvature controlled by z−10 . That is, if z0 increases, the concavity of the ray path, and thus, the
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level of shadowing, decreases. It is fascinating that the same snow metamorphosis that controls
the compaction from snow to ice through gravity also controls the amount of ray bending, and
that this number is measurable from the density variation versus depth.

Note: I will fill in tomorrow all the constants like Q1 and Q0. I have triple checked the units
of everything. If the units don’t seem to work, it’s because the units are held in the constants.

5 Surface Propagation
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