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Abstract

The standard model for the index of refraction in Antarctic firn is presented as a function
of ice depth. The model provides a good fit to the data, but does not account for small-
scale fluctuations in snow density in the upper regions of the firn. The standard model
implies curved paths for radio pulses. In specific situations, Fermat’s principle implies that
the shadowing effect should occur. However, data collected in the 2011-12 season in Moore’s
Bay directly contradicts basic shadowing. A more complete model should include surface
propagation due to ray-trapping between local snow layers.

1 A Derivation of the Density Profile

The compressibility χ of a simple block of material with volume l3 = v and uniform pressure p is
defined as

χ = −1

v

∆v

∆p
(1)

Rearranging,

−∆v

v
= χ∆p (2)

Suppose that a block comprised of snow, ice and air, known as firn, with volume l3 = v is
compressed by a pressure p originating from a force in one direction. The density of the block is
m/l3, where m is the mass. The length of the block on the compressed side becomes l − ε = ∆l,
the volume decreases by ∆v = vf − vi = −εl2, and the change in density is

∆ρ = ρf − ρi = m

(
1

vf
− 1

vi

)
= −m∆v

vfvi
= −ρf

∆v

v
(3)

The initial volume vi = v = l3. Substituting Eq. 2 into Eq. 3,

∆ρ =ρfχ∆p (4)

∆p = (χρf )−1 ∆ρ (5)

Dividing both sides by ∆l, and taking the limit that ∆l→ 0 and that χ does not depend on l,
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∆ρ

∆l
= (ρfχ)−1

∆p

∆l
(6)

p′ = (χρf )−1 ρ′ (7)

This compressibility result relates changes in pressure to changes in density, and will become
useful for simplification in the following derivation. Let the region of firn be described by N firn
blocks labelled by j, with varying density ρj. Let the snow surface correspond to j = N , z = 0,
and the beginning of solid ice (the bottom of the firn) correspond to j = 0, z = −h. Each block
has a height ∆z, and a volume v = A∆z. The normal force f = pnA on block j must oppose the
weight of block j, and the weight of the firn mass above block j, summed up to the surface:

Apnj = g (mj +M) (8)

M =
N∑

i=j+1

mi =
N∑

i=j+1

ρiAdzg (9)

mj = ρiAdzg (10)

Combining the Eqs. 8-10, and cancelling the common A factor,

pnj = g
N∑
i=j

ρidz (11)

Taking the limit dz → 0, A→∞ in a way that leaves v = Adz constant,

p(z) = g

∫ 0

z

ρ(z′)dz′ (12)

Taking the derivative of both sides, applying the fundamental theorem of calculus, and rear-
ranging

−g−1p′(z) = ρ(z)− ρ(0) (13)

Substituting Eq. 7 into Eq. 13 (relabelling the final density ρ0), and rearranging

ρ′ = − (gχρ0) ρ(z) + (gχρ0) ρ(0) (14)

Defining two constants k1 and k2, Eq. 14 may be put into the following form:

ρ′ = k1ρ(z) + k2 (15)

Try the following solution, with boundary conditions ρ(0) = ρs and ρ(z → −∞)→ ρi:

ρ(z) = A−B exp(z/z0) (16)

For now, assume z0 is a free parameter. Equation 16 solves Eq. 15 if A = ρi and B = ∆ρ =
ρi − ρs, giving the final solution

ρ(z) = ρi −∆ρ exp(z/z0) (17)
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Physical insight on the remaining parameter z0 may be gained by using Eq. 15 with Eq. 17 to
find

k1 = z−10 (18)

From Eq. 14

z−10 = gχρ0 (19)

In conclusion, the steepness of the density profile with depth (controlled by z0) depends directly
on the compressibility of the firn.

2 Remark about the Index of Refraction Profile

For dielectric materials like snow and ice, the index of refraction is usually approximated as a linear
equation of density: n(z) ≈ 1 + bρ(z), and this is usually justified through expanding the Landau-
Lifshitz-Looyenga equation (see below). Thus, the index versus depth of the metamorphosis from
snow to ice follows a function like

n(z) = n0 − n1e
z/z0 (20)

At z = 0, n(0) = ns (snow), and as |z| � z0, for z < 0, n = nice. Letting ∆n = nice − ns, the
index equation becomes

n(z) = nice −∆nez/z0 (21)

Notice that the compressibility of the firn (proportional to z−10 ) influences also the steepness of
the index of refraction profile. This is true if the index is a linear function of the density.

3 The Landau-Lifshitz-Looyenga Equation

Let the complex dielectric constants of snow and ice be εi and εs, and the dielectric constant of
their mixture be ε(z). Further, let the two separate dielectrics each have volume fractions vi and
vs, with volume fractions vi + vs = 1, ρ(z) = viρi + vsρs. The Landau-Lifshitz-Looyenga equation
gives

ε(z) =
(
viε

1/3
i + vsε

1/3
s

)3
(22)

Let the real and imaginary parts of dielectric constants follow the notation ε = ε′ + iε′′, and
defined the loss tangent as tan δ = ε′′/ε′. Ice has a loss tangent of order 10−3 at RF frequencies, and
the loss tangent of snow is smaller. To first order in tan δi and u = v2/v1 < 1, with α = (ε′2/ε

′
1)

1/3,
it may be shown that √

<ε(z) = n(z) ≈ v
3/2
i ε

′1/2
i (1 + uα) (23)

Setting v2 = 0, v1 = 1 (or u = 0) reproduces the expected n =
√
ε′i for pure ice. With

β = 3/2(ρs/ρi), v
3/2
i is approximately
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v
3/2
i ≈

(
ρ(z)

ρi

)3/2

(1 + uβ)−1 (24)

Combining equations, and recalling that ε
′1/2
i = nice, the result is

n(z)

nice

≈
(

1 + uα

1 + uβ

)(
ρ(z)

ρi

)3/2

(25)

Expanding to first order about ρ(z)/ρi = 1:

n(z)

nice

≈ −1

2

(
1 + uα

1 + uβ

)
+

3

2

(
1 + uα

1 + uβ

)
ρ(z)

ρi
(26)

Using ns = ε′2s = 1.3, ni = ε′2i = 1.78, ρs = 0.4 g/cc, ρi = 0.917 g/cc, and u = 0.1 as an
example, a linear equation for the index versus density near the firn/ice boundary layer is

n(z)

nice

≈ −0.51 + 1.66ρ(z)[g/cc] (27)

4 Fitting the Firn Model to the Data

Many analyses and derivations have been done to produce the index of refraction versus depth curve
in different locations throughout Antarctica. Figure 1 contains a summary of such measurements.
In the figure, the function n(z) = A−B exp(Cz) is fit to the data points. Where density data was
available, the empirical conversion of n(z) = 1.0 + 0.86ρ(z) has been used.

The value for A in all the fits was restricted to nice = 1.78, from the differential equation
solution to the gravity-density problem. No restriction was placed on the value for B = ∆n,
but note that the results are close to 1.78 − 1.29 = 0.49, where 1.29 is the expected value for ns

(Hanson 2013). Thus, the fits are all measuring ns accurately. The slopes C = z−10 differ across
the Antarctic continent, and are statistically lower at the South Pole compared to other locations.

Table 1 summarizes the results for the fits to the points in the figure. The snow surface index
of refraction is derived from the B parameter, assuming A = nice, and B = ∆n = nice−ns. These
results may be compared to resuts from the upper 2 m (ns = 1.29 ± 0.02), obtained at the Ross
Ice Shelf via multiple tecniques (Hanson 2013). The curves MB#1 and MB#2 refer to two cores
drilled in Moore’s Bay (Ross Ice Shelf) in 2016, and the references for the rest of the data may be
found in the Table.

Note that the Schytt model quoted by (Hanson 2015) found that q = z0 = 35.4 m, which is
in agreement with the MB data. The Schytt model in (Hanson 2015) was fit to firn density data
collected near Williams Field on the Ross Ice Shelf. For index data derived from density data, the
snow/ice conversion n(z) = 1.0 + 0.86ρ(z) was used (ref). The data from Ebimuna (1983) was
originally quoted as pressure in kPa vs. depth, which has been converted to density via the simple
formula in Shumskiy (1960):

z =

(
p− p0
ρig

){
1− χ

(
p+ p0

2
− pn

)}
(1 + αiθ)

+

{
1

ρ0g
− 1− χ(p0 − pn)

ρig

}
p0 ln(p/p0)(1 + βaθ) (28)
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(z)) (ARIANNA 2016)ρMB #1 (n(z) = 1.0+0.86
A-B exp(Cz), B: 0.46 +/- 0.01, C: 0.029 +/- 0.002

(z)) (ARIANNA 2016)ρMB #2 (n(z) = 1.0+0.86
A-B exp(Cz), B: 0.481 +/- 0.007, C: 0.027 +/- 0.001
Byrd: Ebimuna et al (1983)
A-B exp(Cz), B: 0.464 +/- 0.006, C: 0.0244 +/- 0.0004
Mizuho: Ebimuna et al (1983)
A-B exp(Cz), B: 0.423 +/- 0.008, C: 0.027 +/- 0.001
SP: RICE data (2004)
A-B exp(Cz), B: 0.426 +/- 0.024, C: 0.014 +/- 0.001
SP: Eisen et al (2003)
A-B exp(Cz), B: 0.481 +/- 0.011, C: 0.020 +/- 0.001
SP: Gow et al (xxxx)
A-B exp(Cz), B: 0.435 +/- 0.014, C: 0.016 +/- 0.001
Bulk ice value (n = 1.78)
Surface value (n = 1.29+/-0.02) (Hanson 2013)

Figure 1: A summary of all the n(z) data discovered for various locations in Antarctica, including
Moore’s Bay (MB) and the South Pole. All data points and fit lines that are black correspond to
the South Pole, and the gray points and fit lines correspond to Moore’s Bay, Byrd station, and
Mizuho station.

The parameters in the equation of depth, z, versus pressure, p, are as follows: p0 is the pressure
at the surface, ρi is the density of ice (0.91670 g/cc) at a pressure pn = 1 atmosphere and a
temperature θ = 0◦ C, with a volumetric compressibility of χ = 1.2 × 10−5 bar−1, a coefficient
of linear expansion of αi = 5.1 × 10−5 C◦−1, and surface density of ρ0. A value of 94.306 kPa is
chosen for the surface pressure, corresponding to an altitude of ≈ 0.5 km. The temperature θ is
the average temperature through the firn, taken to be −10 C◦ in Fig. 1 (Hanson dissertation).

5 Fermat’s Principle, and Ray-Tracing

A key question for ARA/ARIANNA future designs is the expected path of a radio pulse from an
Askaryan event in firn. Beginn with Fermat’s principle, which states that a ray must traverse the
path that minimizes the travel time. Fermat’s principle is similar to the principle of least-action,
in which a massive particle takes the path of least-resistance (cite Wiki Fermat’s).
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Ref./Location A = nice B ns C (m−1) z0 (m)
MB#1/Moore’s Bay 1.78 0.46± 0.01 1.32± 0.01 0.029± 0.002 34.5± 2
MB#2/Moore’s Bay 1.78 0.481± 0.007 1.299± 0.007 0.027± 0.001 37± 1

Ebimuna (1983)/Byrd 1.78 0.464± 0.006 1.316± 0.006 0.0244± 0.0004 41± 1
Ebimuna (1983)/Mizuho 1.78 0.423± 0.008 1.357± 0.006 0.027± 0.001 37± 1

RICE (2004)/South Pole 1.78 0.43± 0.02 1.35± 0.02 0.014± 0.001 71± 5
Eisen (2003)/South Pole 1.78 0.48± 0.01 1.3± 0.01 0.020± 0.001 50± 2.5
Gow (xxxx)/South Pole 1.78 0.435± 0.01 1.345± 0.01 0.016± 0.001 62.5± 4

Table 1: The fit parameters for the curves shown in Fig. 1. The function fit to the data is
n(z) = nice−∆n exp(Cz). The differential equation derived in the first section requires nice = 1.78
and B = ∆n = nice − n(0) as boundary conditions.

δS = 0 (29)

δ

∫ B

A

n(z)(1 + ẏ2)1/2dxdydz =

∫ B

A

L(z, ẏ)dxdydz = 0 (30)

Derivatives indicated by the dot notation are with respect to z, not time. The assumption that
x = ẋ = 0 has been taken without loss of generality. Note that ẏ = dy/dz is unit-less, and ÿ has
units of inverse meters. Using the Euler-Lagrange equations to minimize the variation in the path,
and letting u = ẏ:

d

dz

(
∂L

∂ẏ

)
−
(
∂L

∂y

)
= 0 (31)

d

dz

(
∂L

∂ẏ

)
= 0 (32)

u̇ = −
(
ṅ

n

)
(u3 + u) (33)

Note that the units are inverse meters on each side of the equation: all factors of u are unit-less,
and ṅ has units of inverse meters. Putting in the model for n(z), the final equation of motion is

u̇ = z−10

(
∆nez/z0

nice −∆nez/z0

)
(u3 + u) (34)

As a check, note the deep ice limit: |z| � z0, z < 0:

u̇ = 0 (35)

The solution to this equation of motion, after solving for z is

z(y) = a+ by (36)

In other words, if the rays are far from the firn, the rays must propagate in straight lines.
For the case of a shallow ray z → 0, propagating initially with a horizontal velocity component
satisfying u3 � u, the main equation of motion reduces to
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du

dz
=

(
nice − ns

z0ns

)
u3 (37)

This is a variables-separable differential equation. Using an initial point of (y1, z1), a particular
solution is

z(y) = − 1

2z0

(
nice − ns

ns

)
(y − y1)2 + z1 (38)

Thus, for a very shallow ray, with initial horizontal velocity, the solution dictates that the
shortest travel time between two near-surface points is given by a quadratic path. As an example,
use z0 = 37 m and ns = 1.30 to describe Moore’s Bay refraction, and z0 = 61 m, ns = 1.33 to
describe the South Pole refraction. Figure 2 compares the hypothetical ray-paths.

The next least-restrictive approximation for the shallow depth of the ray is exp z/z0 ≈ 1+z/z0,
rather than z → 0. Let q = ∆n/z0. The final solution with this limit is

z(y) = −1

2

Q1

z0
(y − y1)2 −

Q0

Q1

z0 (39)

Q1 = 1 +
nice

ns

(40)

Q0 =
z1
z0

+ 1 +
nice

∆n

(
ln
( ns

∆n

)
− 2
)

(41)

Note that, in either the limit of z → 0, or exp z/z0 ≈ 1+z/z0, the solutions are quadratic, with
curvature controlled by z−10 . That is, if z0 increases, the concavity of the ray path, and thus, the
level of shadowing, decreases. It is fascinating that the same snow metamorphosis that controls
the compaction from snow to ice through gravity also controls the amount of ray bending, and
that this number is measurable from the density variation versus depth.

Note: I will fill in tomorrow all the constants like Q1 and Q0. I have triple checked the units
of everything. If the units don’t seem to work, it’s because the units are held in the constants.
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6 Surface Propagation
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