

Constraints on the Ultra-High-Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array

P. Allison^a, J. Auffenbergⁱ, R. Bard^b, J. J. Beatty^a, D. Z. Besson^{c,d}, C. Bora^e, C.-C. Chen^f, P. Chen^f, A. Connolly^a, J. P. Davies^g, M. A. DuVernoisⁱ, B. Fox^h, P. W. Gorham^h, K. Hanson^k, B. Hill^h, K. D. Hoffman^b, E. Hong^a, L.-C. Hu^f, A. Ishihara^l, A. Karleⁱ, J. Kelleyⁱ, I. Kravchenko^e, H. Landsman^j, A. Laundrieⁱ, C.-J. Liⁱ, T. Liu^f, M.-Y. Liuⁱ, R. Maunu^b, K. Mase^l, T. Meures^k, C. Miki^h, J. Nam^f, R. J. Nichol^g, G. Nirⁱ, A. Ó Murchadha^k, C. G. Pfendner^a, K. Ratzlaffⁿ, B. Rotter^h, P. Sandstromⁱ, D. Seckel^m, A. Shultz^e, M. Song^b, J. Stockham^c, M. Stockham^c, M. Sullivan^d, J. Touart^b, H.-Y. Tu^f, G. S. Varner^h, S. Yoshida^l, R. Youngⁿ, M. Bustamante^a, D. Guetta^o

^aDept. of Physics and CCAPP, The Ohio State University, 191 W. Woodruff Ave., Columbus, OH 43210, USA

^bDept. of Physics, University of Maryland, College Park, MD 20742, USA

^cDept. of Physics and Astronomy, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045, USA

^dNational Research Nuclear University - Moscow Engineering Physics Institute, 31 Kashirskaya Shosse, Moscow 115409, Russia

^eDept. of Physics and Astronomy, University of Nebraska-Lincoln, 855 N 16th Street, Lincoln, NE 68588, USA

^fDept. of Physics, Grad. Inst. of Astrophys., & Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (R.O.C.)

^gDept. of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom

^hDept. of Physics and Astronomy, University of Hawaii-Manoa, 2505 Correa Rd., Honolulu, HI 96822, USA

ⁱDept. of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin-Madison, 222 W. Washington Ave, Madison, WI 53706, USA

^jDepartment of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot, 76100, Israel

^kService de physique des particules élémentaires, Université Libre de Bruxelles, CP230, boulevard du Triomphe, 1050 Bruxelles, Belgium

^lDept. of Physics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan

^mDept. of Physics and Astronomy, University of Delaware, 104 The Green, Newark, DE 19716, USA

ⁿInstrumentation Design Laboratory, University of Kansas, 1251 Wescoe Drive, Lawrence, KS 66045, USA

^oORT Braude, Karmiel 21982, OAR-INAF, Italy

Abstract

We report on a search for ultra-high-energy (UHE) neutrinos from gamma-ray bursts (GRBs) in the data set collected by the Testbed station of the Askaryan Radio Array (ARA) in 2011 and 2012. From 57 selected GRBs, we observed no events that survive our cuts, which is consistent with 0.12 expected background events. Using NeuCosmA as a numerical GRB reference emission model, we estimate upper limits on the prompt UHE GRB neutrino fluence and quasi-diffuse flux from 10^7 to 10^{10} GeV. This is the first limit on the prompt UHE GRB neutrino quasi-diffuse flux above 10^7 GeV.

Keywords:

Gamma-Ray Bursts, UHE neutrinos, radio Cherenkov

1. Introduction

2 Gamma-ray bursts (GRBs) are the most powerful ex-
3 plosions in the Universe. They emit high-energy gamma
4 rays that are observable on Earth up to energies of ~ 100
5 GeV, and are candidate sources of ultra-high-energy
6 cosmic rays (UHECRs, above $\sim 10^9$ GeV), whose ori-
7 gin remains a mystery, and of neutrinos. The detection
8 of neutrinos from GRBs would shine light on the ability

9 of GRBs to accelerate hadrons to the highest energies,
10 and therefore on the possibility that they are the sources
11 of the observed UHECRs.

12 The widely accepted phenomenological interpreta-
13 tion of particle acceleration in GRBs is the fireball
14 model [1, 2, 3, 4, 5]. In this model, the energy car-
15 ried by the electrons and hadrons in a jet of relativis-
16 tic, expanding plasma wind — the fireball — may be
17 dissipated through internal shocks between regions of
18 plasma overdensity [6, 7]. These shocks convert a sub-
19 stantial part of the kinetic energy to internal energy by

Email address: connolly@physics.osu.edu (A. Connolly)

20 accelerating the particles in the plasma. Accelerated
21 electrons dissipate the internal energy as prompt gamma
22 rays from synchrotron and inverse-Compton emission.
23 Accelerated protons may dissipate the internal energy
24 by interacting with the prompt gamma rays and producing
25 neutrinos in the 10^5 – 10^{10} GeV range via a number of intermediate
26 resonances [8, 9]. Later — typically,
27 a few minutes after the prompt phase — the fireball
28 collides with its surrounding medium, giving rise to re-
29 verse and forward shocks. The latter are believed to be
30 responsible for the GRB afterglow emission [10, 11],
31 which may include neutrinos of energies comparable to
32 the prompt ones [12].

33 Thus, GRBs might conceivably produce high-energy
34 neutrinos copiously. However, due to the immense dis-
35 tances separating us from the bursts — tens of Mpc
36 to a few Gpc — the flux of neutrinos that arrives at
37 Earth is expected to be low. Moreover, the flux is ex-
38 pected to decrease with rising neutrino energy, due to
39 the rising scarcity of protons of progressively higher
40 energies at the sources. Over the last half-century,
41 neutrino astronomy has steadily progressed in its abil-
42 ity to detect low fluxes, culminating in the recent de-
43 tection of a diffuse astrophysical neutrino flux, up to
44 a few PeV, by the km-scale IceCube neutrino tele-
45 scope [13, 14, 15, 16, 17, 18]. IceCube detects the
46 optical Cherenkov light induced by neutrino interactions
47 using > 5000 photomultipliers buried $\gtrsim 1.5$ km deep in
48 the Antarctic ice.

49 Significant sensitivity to higher neutrino energies re-
50 quires larger detectors. While it can be cost-prohibitive
51 to scale detectors that use techniques established for
52 smaller scales up to volumes of order ~ 100 km 3 , an al-
53 ternative is to utilize techniques that target a larger vol-
54 ume with less instrumentation.

55 One of the most promising methods to detect neutrinos
56 in the UHE range of 10^8 – 10^{10} GeV in a large
57 volume is the radio-Cherenkov technique [19]. The in-
58 teraction of a UHE neutrino in dense media induces
59 an electromagnetic shower which develops a charge
60 asymmetry. Because of this charge asymmetry, when
61 the wavelength of the Cherenkov radiation is larger
62 than the transverse size of the shower, the emission
63 is coherent. This is known as the Askaryan effect
64 [20, 21, 22, 23, 24, 25, 26]. For showers in ice, this
65 process produces a radio frequency (RF) impulse at
66 $\lesssim 1$ GHz which can be observed by antenna arrays
67 read out with \sim GHz sampling rates. In this frequency
68 range, the attenuation length in Antarctic ice is ~ 1 km
69 [27, 28], allowing a sparsely distributed array of de-
70 tector units to observe volumes of ~ 100 km 3 . This
71 is the strategy adopted by the Askaryan Radio Array

72 (ARA) [27, 29, 30]. In contrast, detectors that use op-
73 tical Cherenkov signals are restricted by the $\lesssim 100$ m
74 lengths over which attenuation, absorption, and scatter-
75 ing diminish the signal, and thus require many more de-
76 tector units to instrument the same volume [31].

77 In this paper, we report on a search for UHE neu-
78 trinos from GRBs using the 2011–2012 data set collected
79 by the ARA Testbed station. Previous experiments have
80 searched for neutrinos from GRBs using different tech-
81 niques. However, they have either been sensitive to
82 lower energies [32, 33] or only reported limits on the
83 individual fluences of a handful of bursts [34]. Instead,
84 we present an upper limit on the stacked fluence of UHE
85 prompt neutrinos from 57 selected GRBs and the first
86 limit on the prompt UHE GRB quasi-diffuse neutrino
87 flux in the range 10^7 – 10^{10} GeV.

88 This paper is organized as follows. In Section 2, we
89 summarize previous GRB neutrino searches. In Sec-
90 tion 3, we describe ARA and the Testbed station. In
91 Section 4, we introduce our reference GRB emission
92 model, NeuCosmA, and the AraSim detector simula-
93 tion. In Section 5, we detail our data analysis pipeline.
94 In Section 6, we present our results. In Section 7, we
95 postulate future detection and analysis improvements.
96 We conclude in Section 8.

97 2. Previous GRB Neutrino Analyses

98 There have been many complementary GRB neu-
99 trino searches reported by IceCube [32, 35, 36, 37, 38],
100 ANTARES [33, 39], RICE [40], and ANITA [34].

101 IceCube [41] is an in-ice, ~ 1 km 3 optical-Cherenkov
102 detector located at the South Pole. It has reported the
103 most stringent limit on the GRB quasi-diffuse neutrino
104 flux from 10^5 to 10^7 GeV [36]. IceCube initially used
105 an analytical GRB neutrino model by Guetta *et al.* [9],
106 based on the Waxman-Bahcall (WB) model [42], but
107 now uses a numerical flux calculation [37, 38] that is
108 compatible with the one used in the present analysis,
109 NeuCosmA [43].

110 ANTARES [44] is an optical-Cherenkov detector,
111 similar to IceCube, but located in the Mediterranean
112 Sea, and instrumenting a volume of only ~ 0.03 km 3 . It
113 is sensitive to a similar range of neutrino energies as Ice-
114 Cube. The latest GRB neutrino analysis by ANTARES
115 was based on NeuCosmA; its GRB neutrino flux limit
116 is approximately an order of magnitude weaker than the
117 limit from IceCube [39].

118 RICE [45] was an in-ice radio-Cherenkov detector
119 located in the South Pole, operational until 2011, that
120 instrumented a volume of ~ 25 km 3 . The GRB neu-

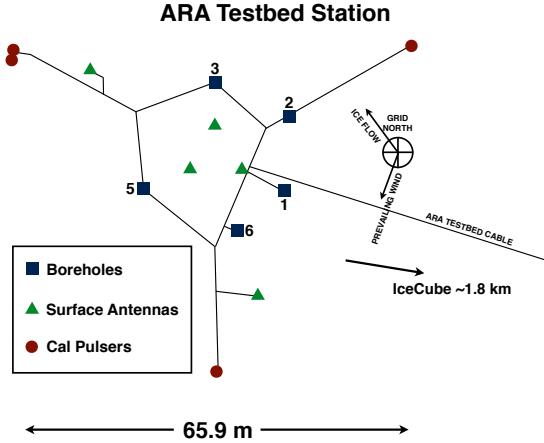


Figure 1: Schematic of the ARA Testbed station. The borehole numbers are indicated next to their locations. Boreholes 1 through 3 and Borehole 5 each have a pair of Vpol and Hpol antennas while Borehole 6 has two Hpol antennas (Borehole 4 was not filled). The maximum depth of the borehole antennas is ~ 30 m.

trino analysis by RICE was based on an analytical neutrino flux model and set individual fluence limits on five GRBs, from 5×10^7 to 5×10^8 GeV [40].

ANITA [46] is a balloon-borne Antarctic experiment that has flown three times under the NASA long-duration balloon program, searching for neutrinos using the radio-Cherenkov technique. From an altitude of ~ 37 km, ANITA can monitor an extremely large volume of Antarctic ice, $\sim 1.6 \times 10^6$ km³ [47]. The ANITA GRB neutrino analysis [34] was based on the analytic WB GRB neutrino flux model [42] and set fluence limits for 12 individual GRBs that occurred in low-background analyzable time periods during its 31-day flight. ANITA provided the most recent GRB neutrino fluence limit from 10^8 to 10^{12} GeV. The limited lifetime of a balloon experiment constrains the maximum number of analyzable GRBs for ANITA and thus they could not set a quasi-diffuse flux limit, but instead set fluence limits for each individual GRB.

3. The ARA Instrument

The full proposed ARA detector, ARA37, would consist of 37 stations spaced 2 km apart at a depth of 200 m. The first three design ARA stations (A1, A2, A3) were deployed in the 2011-2012 and 2012-2013 seasons, while a prototype Testbed station, which we used for this GRB neutrino search, was deployed in the 2010-2011 season.

Figure 1 shows the layout of the Testbed with the positions of the five boreholes. Boreholes 1 through 3 and

Borehole 5 each contain a pair of antennas consisting of one vertically polarized (Vpol) bicone antenna and one horizontally polarized (Hpol) bowtie-slotted cylinder antenna. Borehole 6, instead, has two Hpol quad-slotted cylinder (QSC) antennas which were deployed in the Testbed to test the antenna design before deploying them in the deep stations. All borehole antennas have bandwidths from 150 MHz to 850 GHz. For the trigger and data analysis, we utilized only antennas in Boreholes 1–3 and 5. The maximum depth of the borehole antennas in the Testbed is approximately 30 m. There are also three calibration pulser VPol and HPol antenna pairs that were installed at a distance of ~ 30 m from the center of the Testbed array to provide *in situ* timing calibration and other valuable cross checks related to simulations and analysis. A more detailed description of the Testbed station is in Refs. [27, 29].

4. Analysis Tools

In order to estimate the expected GRB neutrino spectra, we use the NeuCosmA GRB neutrino model. In order to estimate the efficiency of the ARA Testbed, we use AraSim, the ARA detector simulation software. Highlights of NeuCosmA and AraSim are described in the following sections.

4.1. GRB Neutrino Model: NeuCosmA

NeuCosmA [48, 43] is a state-of-the art computer code to calculate the neutrino fluence from cosmic accelerators such as GRBs. It performs detailed and fast computation of neutrino production in photohadronic $p\gamma$ interactions, via Δ -resonance, higher resonances, K^+ decay channels, multi-pion processes, and direct production modes, and includes energy-loss processes of the secondaries and neutrino flavor oscillations during propagation to Earth. NeuCosmA provides fast calculation of neutrino yields beyond simple analytical estimates, which are typically limited in the number of production modes. For each GRB, it provides the energy-dependent flavor composition of the neutrino fluence at Earth, *i.e.*, the ratio of each flavor to the total fluence, $(f_{e,\oplus} : f_{\mu,\oplus} : f_{\tau,\oplus})$.

We use NeuCosmA with model parameter values inferred from the observed gamma-ray signal of a GRB to calculate its neutrino spectrum. These parameters are T_{90} (the time in which 90% of the gamma-ray fluence is collected), α and β (spectral indices of the Band function [49] at low and high energies), E_{peak} (the peak energy of the gamma-ray spectrum), F_γ (the integrated gamma-ray fluence), E_{min} and E_{max} (the minimum and

198 maximum energy of the fluence), and z (redshift). We
199 extract parameter values from the Gamma-ray Coor-
200 dinates Network (GCN) catalog [50, 51]. For unmea-
201 sured parameters, we use their default values from the
202 GRB-web database [52, 32]. For all GRBs, we assume
203 that the bulk Lorentz factor of the fireball $\Gamma = 316$,
204 the energy in electrons and photons is equal to the en-
205 ergy in magnetic fields, and the ratio of energy in pro-
206 tons to energy in electrons — the baryonic loading —
207 $f_p = 10$ [32, 43]. These are the same choices as in pre-
208 vious analyses [32, 35, 36, 37, 39, 38].

209 Synchrotron energy losses of secondary π^+ , π^- , π^0 ,
210 and μ^\pm in the magnetic field of the source [53, 54] af-
211 fect the shape and flavor composition of the neutrino
212 fluence [55]. The onset of synchrotron losses for muons,
213 pions, and kaons, at progressively higher energies, leads
214 to GRB neutrino spectra that, in general, exhibit three
215 distinctive kinks; see curves for individual bursts in Fig.
216 5. These effects, together with the energy dependence of
217 the proton mean free path and the interaction of protons
218 with the full photon spectrum, result in a quasi-diffuse
219 neutrino flux — the “numerical fireball calculation” in
220 Ref. [43] — that is up to one order of magnitude smaller
221 than the analytical estimates [9] used in the first IceCube
222 GRB neutrino search [32].

223 Contributions from different modes are performed via
224 “response functions,” which contain the relevant kine-
225 matics, multiplicities, and cross sections, encoded in
226 fast-access look-up tables. This method is fast and ac-
227 curate up to PeV energies. At higher energies, rele-
228 vant for the present analysis, this approach has prob-
229 lems treating the rising complexity in interaction final
230 states, and QCD-based Monte Carlo methods like those
231 implemented in SOPHIA [56] would give more accu-
232 rate results. However, we expect that the impact of the
233 particle-physics uncertainties is smaller than that com-
234 ing from ambiguities in the astrophysical modeling of
235 GRBs, even after reduction of errors due to averaging
236 over the distribution of astrophysical parameter values.
237 We discuss these effects more below. We use Neu-
238 CosmA in the entire energy range of our analysis to
239 obtain limits that are methodologically comparable to
240 those found by other experiments.

241 Our neutrino production model assumes that pro-
242 tons are perfectly confined by the magnetic field at the
243 source, and that only the neutrons produced in *py* inter-
244 actions contribute to the flux of UHECRs. This “neu-
245 tron model” results in a strong correspondence between
246 the UHECR flux and the neutrino flux, which is in ten-
247 sion with the non-observation of neutrinos from GRBs
248 by IceCube [32, 35, 36, 37]. All previous GRB neutrino
249 searches have assumed the neutron model, so we adopt

250 it to allow direct comparison of our results to theirs. We
251 have not considered neutrino production models where
252 protons can leak out of the source without interacting.
253 They can yield neutrino fluxes lower by as much as an
254 order of magnitude [57, 58]. So can models where mul-
255 tiple shell collisions occur in the jet, each one with dif-
256 ferent emission parameters [59, 60, 61].

257 4.2. *Detector simulation: AraSim*

258 AraSim [29] is a Monte-Carlo simulation software
259 package used within the ARA Collaboration to sim-
260 ulate neutrino signals as they would be observed by the
261 detector. It simulates the full chain of neutrino events,
262 such as the *passage of the neutrino* through the Earth,
263 *radio-Cherenkov* emission, the path and response of the
264 emitted signal in the ice, and the trigger and data acqui-
265 sition mechanisms of the detector, as described below.

266 AraSim was used in this search to model the neutrino
267 interactions and detector response in the same manner
268 that it was used in the ARA Testbed diffuse search,
269 but we provide relevant details here for completeness.
270 AraSim generates neutrino events with uniformly dis-
271 tributed neutrino directions and interaction point loca-
272 tions chosen with a uniform density in the ice. At each
273 energy, we take the average flavor ratio of all GRBs
274 given by NeuCosmA, weighted by their relative fluence.
275 To properly account for the directional dependence of
276 the sensitivity, the event is weighted by the probabili-
277 ty that the neutrino survived its *passage* through the
278 Earth and reached the interaction point. Once a neutrino
279 interaction location is chosen in the ice, an in-ice ray
280 tracing algorithm (RaySolver) derives multiple source-
281 to-target ray-trace solutions giving signal arrival times.
282 From each ray-trace solution, the radio-Cherenkov sig-
283 nal, including a phase response, is then calculated with a
284 custom parameterized radio-Cherenkov emission model
285 inspired by Ref. [62]. The modeled signal is generated
286 for both the hadronic and electromagnetic portions of
287 the shower separately, as they have different character-
288 istic shower profiles. We do not currently model the
289 Landau-Pomeranchuk-Migdal (LPM) [63, 64, 65] ef-
290 fect in our RF emission model. Instead, we apply a cor-
291 rector factor to the effective volume for each energy bin
292 based on the impact of the LPM effect on the sensitivity,
293 using the simpler RF emission model from Ref. [66].

294 We then apply detector properties to the signal, such
295 as antenna responses, amplifier and filter responses,
296 noise figure, and trigger mechanism. The antenna, am-
297 plifier, and filter responses are modeled based on simu-
298 lation and measurements, while the noise figure and the
299 trigger mechanism are calibrated to the Testbed data.

300 When a simulated event passes the trigger, the wave-
 301 forms are written into the same format as the data so
 302 that the simulated events can be analyzed with identical
 303 software.

304 5. Data Analysis

305 For this GRB neutrino search, we selected for anal-
 306 ysis only those GRBs that occurred during clean **data-**
 307 **taking** periods and in a region of the sky that is observ-
 308 able by our detector. After the GRBs are selected, we
 309 use the same selection criteria for the RF neutrino can-
 310 didate events as in the ARA diffuse neutrino search [29],
 311 but we search in a narrow time window around each
 312 GRB event, and thus we can loosen some cuts. We use a
 313 blinding technique that draws on both the **ones** used for
 314 the ARA diffuse neutrino search and the ANITA GRB
 315 neutrino analysis [34].

316 Our analysis consists of three stages. First, we use a
 317 10% subset from the full ARA Testbed data set for the
 318 preliminary background analysis. To estimate the back-
 319 ground, **we use two 55-minute time windows on either**
 320 **side of each GRB event that excludes a 10-minute sig-**
 321 **nal window centered on that event.** We optimize the
 322 cuts in the background analysis windows for the best
 323 expected limit in the signal windows. Second, we look
 324 at the number of events in the background analysis win-
 325 dows in the remaining 90% of the data set to check the
 326 consistency with the estimate based on the 10% subset.
 327 Third, we search for neutrino events in the signal win-
 328 dows in the entire (10%+90%) data set (note that the
 329 signal windows in the 10% set were not used for back-
 330 ground studies).

331 5.1. GRB Selection

332 We started with the 589 GRBs that occurred from
 333 **January** 2011 to **December** 2012 over the entire sky. For
 334 this analysis, we selected those that occurred during pe-
 335 **riods of clean data-taking** and that fell within the field
 336 of view of our detector. We used the IceCube GRB cat-
 337 **alog** [52], which is based on the GCN [50, 51], to find
 338 GRBs during the time period of interest.

339 From the 589 GRBs, we first rejected GRBs that
 340 failed the Effective Livetime Cuts. The Effective Live-
 341 time Cuts consist of three cuts which require a low back-
 342 ground level and stable data-taking. The first cut is a
 343 simple time window cut which rejected GRBs that oc-
 344 curred during periods of high levels of activity at the
 345 South Pole station in the 2011 to 2013 seasons, in order
 346 to avoid strong anthropogenic backgrounds: for each
 347 year, we rejected GRBs that occurred from October 22nd

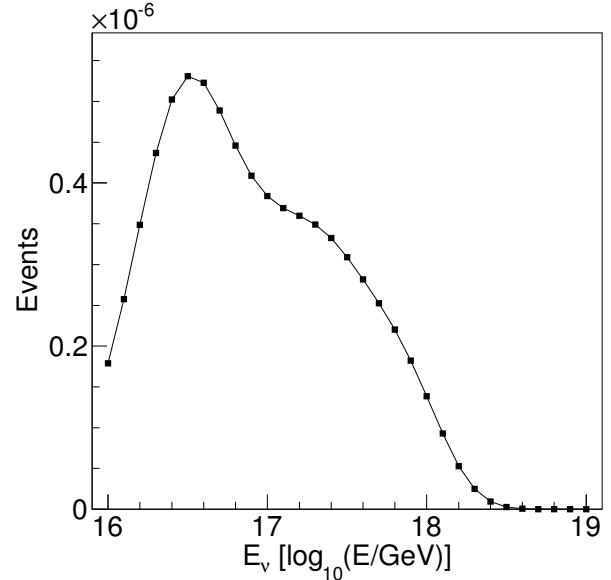


Figure 2: Expected event spectrum from a simulated neutrino sample generated from the fluences of the 257 GRBs that survived the Effective Livetime Cuts. Here we have applied the same analysis cuts that are used for the ARA diffuse neutrino search [29]. The ARA Testbed is most sensitive at $\sim 10^{7.5}$ GeV for these NeuCosmA-generated GRB fluences.

348 to February 16th. The second cut requires that the data
 349 is not contaminated by any strong continuous wave-
 350 form (CW) source by rejecting any GRBs that occurred
 351 within an hour of any run where 10% or more events
 352 are highly correlated with each other. The third and
 353 final timing cut is a livetime cut which requires the detec-
 354 tor to be running and stably storing data within an hour
 355 of each GRB. The livetime represents the fraction of a
 356 second that the trigger was available. If there was any
 357 **second** when the livetime of the detector was lower than
 358 10% during the hour before or after a GRB, we reject
 359 that GRB from our analysis. After applying the Effec-
 360 tive Livetime Cuts, 257 GRBs survived from 224 days
 361 of analyzable period of data taking.

362 **To these surviving GRBs, we applied** an additional
 363 cut which requires that the GRB should be included in
 364 the **field of view of the Testbed**. In order to define a
 365 field of view for the Testbed, we first found the energy
 366 bin which is the most sensitive to neutrinos from GRBs.

367 **Figure 2** is the expected event spectrum from the 257
 368 GRBs after applying analysis cuts that are used for the
 369 diffuse neutrino search [29]. It shows that the Testbed
 370 is most sensitive to NeuCosmA-generated neutrino flu-
 371 ences from these GRBs at $\sim 10^{7.5}$ GeV. We used a sim-
 372 ulation set with the full range of incident angles of neu-

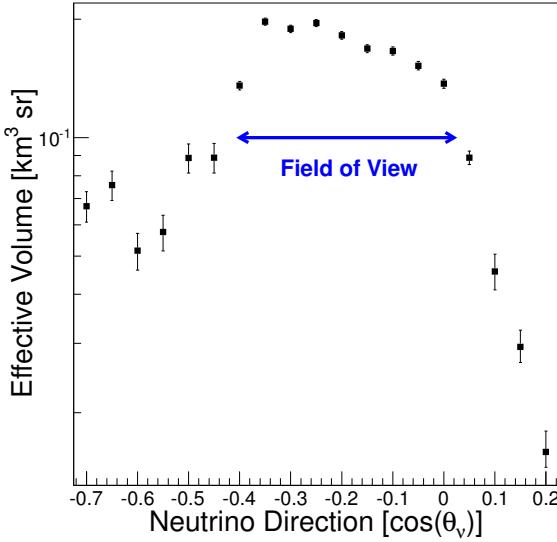


Figure 3: Effective volume of the ARA Testbed as a function of the zenith angle (θ_v) of the neutrino travel direction with a neutrino energy of $10^{7.5}$ GeV. The field of view is defined as the Full Width Half Maximum (FWHM) of the effective volume, which is $-0.4 < \cos \theta_v < 0.05$. This field of view covers $\sim 20\%$ of the sky. A vertically up-going neutrino has $\cos \theta_v = 1$. The shape of this distribution is described in the text.

373 neutrinos at $10^{7.5}$ GeV, and obtained the effective volume
 374 as a function of neutrino direction.

375 The effective volume V_{eff} is obtained for each energy
 376 bin and each neutrino direction bin by

$$V_{\text{eff}} = \frac{V_{\text{gen}}}{N_{\text{thrown}}} \sum_{i=1}^{N_{\text{triggered}}} w_i, \quad (1)$$

377 where V_{gen} is a volume of ice where ice-neutrino interactions
 378 are generated uniformly, N_{thrown} is the total number of events thrown ($\sim 10^6$ for each simulation set), and
 379 $\sum_{i=1}^{N_{\text{triggered}}} w_i$ is the weighted sum of the number of events
 380 that triggered. The weight w_i is the probability that the
 381 i^{th} neutrino was not absorbed in the Earth, given its di-
 382 rection and the position of the interaction
 383

384 Figure 3 shows the effective volume versus zenith angle of the neutrino travel direction. The field of view
 385 of the Testbed is defined as the Full Width Half Maxi-
 386 mum (FWHM) of the effective volume (arrow shown in
 387 Fig. 3), which is $-0.4 < \cos \theta_v < 0.05$. Earth absorption
 388 reduces the effective volume at high $\cos \theta_v$ (right-hand
 389 side of the plot), while the shadowing effect from the
 390 ray-tracing in ice causes the cut-off at low $\cos \theta_v$ (left-
 391 hand side of the plot) [29].

393 Figure 4 shows the distribution of the 57 GRBs that

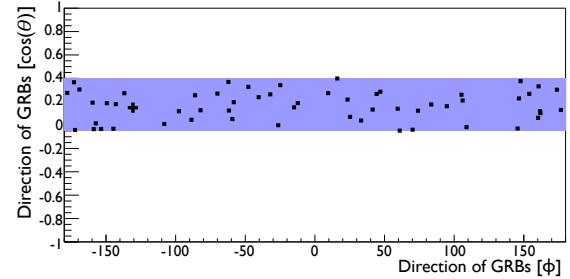


Figure 4: The distribution map of 57 selected GRBs in Testbed local coordinates. The blue band in the map is the field-of-view cut range defined in Fig. 3. Note that $\cos \theta$ in this map is the direction of the GRB while $\cos \theta_v$ in Fig. 3 is the travel direction of the neutrino.

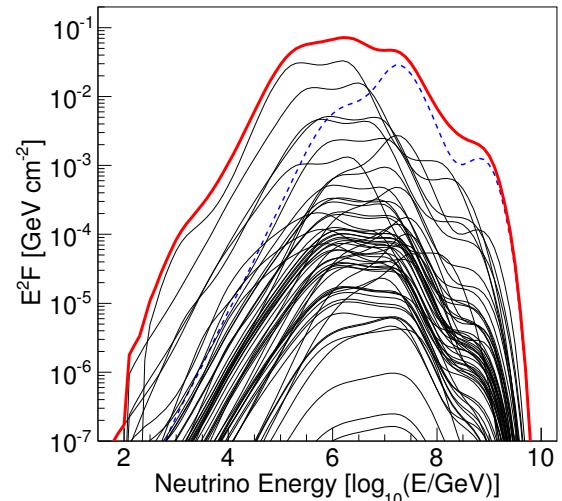


Figure 5: The fluences of the 57 selected GRBs (black curves and blue dashed curve) as generated by NeuCosmA and their sum fluence (thick red curve). One GRB is brighter than the others by an order of magnitude above 10^7 GeV (GRB110426A, blue dashed curve).

394 remain after applying a cut requiring that each GRB is
 395 within the field of view. They are shown in Testbed local
 396 coordinates, where $\phi = 0$ points along the direction of
 397 ice flow and $\cos \theta = 0$ points along the tangent to the
 398 surface of the geoid shape of the Earth.

399 Figure 5 shows the fluences of all 57 selected GRBs
 400 generated with the NeuCosmA software. Among them,
 401 one was brighter than the others: GRB110426A. Its flu-
 402 ence was higher than the others by an order of magni-
 403 tude for energies above 10^7 GeV. Its location on the sky
 404 is marked as a cross in Fig. 4 and its parameters values
 405 are shown in Table 1. The long duration and high spec-
 406 tral indices of GRB110426A made its expected neutrino
 407 fluence significantly higher than for other GRBs at ener-
 408 gies above 10^7 GeV.

GRB	T_{90} [sec]	α	β	E_{peak} [keV]	F_{γ} [erg cm $^{-2}$]	E_{min} [MeV]	E_{max} [MeV]	z
GRB110426A	376.05	2.28	3.28	200	4.54×10^{-5}	0.01	1	2.15

Table 1: GRB110426A parameter values. Values in bold text are not properly measured or reported and therefore default values are used [52].

409 5.2. Neutrino search optimization

410 This analysis uses the same set of cuts as in the Inter-
 411 ferometric Map Analysis in the ARA diffuse neutrino
 412 search [29]. The analysis uses relative timing informa-
 413 tion to reconstruct the location of the source of the RF
 414 emission. The interferometric map is constructed from
 415 the sum of cross-correlations between the different pairs
 416 of antennas — a strong peak on the map indicates a high
 417 correlation among waveforms after correcting for the ar-
 418 rivel times of the signals. We perform an optimization
 419 of the cuts for this analysis, which differs from the dif-
 420 fuse search by using the summed GRB fluence over the
 421 57 GRBs for the expected signal, and only searching in
 422 the 10 minute window surrounding each GRB.

423 When optimizing our cuts, we use average, energy-
 424 dependent flavor ratios at Earth, which are calculated
 425 using the individual flavor ratios of each GRB in our
 426 sample, as output by NeuCosmA — the contribution
 427 of each GRB is weighted by its relative neutrino flu-
 428 ence. This is important, since electron neutrinos are
 429 more likely than other flavors to pass our trigger and
 430 analysis cuts due to charged-current events depositing
 431 the full neutrino energy in the particle shower. See Sec-
 432 tion 6.2.

433 Among the set of analysis cuts described in the dif-
 434 fuse neutrino search, the Delay Difference Cut, the Re-
 435 construction Quality Cuts, and the Peak/Correlation Cut
 436 were re-optimized for this search. The three cuts that
 437 were re-optimized are all based on the quality of the
 438 directional reconstruction while the rest of the cuts are
 439 designed to reject specific types of backgrounds such as
 440 CW and calibration pulser events. The Delay Difference
 441 Cut ensures that the reconstruction direction derived
 442 from all the borehole antennas of the same polarization
 443 is consistent with the delay observed between the sig-
 444 nals in the two antennas with the strongest signals. The
 445 Reconstruction Quality Cuts ensure that the event can
 446 be characterized by a single well-defined pointing di-
 447 rection on the interferometric reconstruction map. The
 448 Peak/Correlation Cut requires that events have strong
 449 correlation between the signal strength and the cross-
 450 correlation value from the interferometric map, which
 451 is expected from impulsive events.

452 A total of four cut parameters or options from these
 453 three cuts are allowed to vary to give the best expected
 454 limit on the dominant GRB event from the NeuCosmA

455 model. For the Delay Difference Cut, we only consider
 456 whether to remove the cut, since it is largely redun-
 457 dant with other cuts. The Reconstruction Quality Cuts
 458 have two cut parameter values, A_{peak} and $A_{\text{peak}}/A_{\text{total}}$,
 459 which ensure that the reconstruction direction is well-
 460 defined and unique, respectively. Parameter A_{peak} is the
 461 maximum allowed area in square degrees on the inter-
 462 ferometric map surrounding the best reconstruction di-
 463 rection where the correlation remains high. Parameter
 464 $A_{\text{peak}}/A_{\text{total}}$ is the maximum allowed ratio between the
 465 high-correlation area around the best reconstruction
 466 direction and the high-correlation area from the entire
 467 map. The last parameter that was included in the opti-
 468 mization was the Peak/Correlation Cut Value, which is
 469 a unitless parameter that defines the minimum required
 470 value of a linear combination of the signal strength and
 471 the peak correlation value on the interferometric map.

472 The expected number of neutrinos from each GRB
 473 and the background expectation based on the time of
 474 each GRB are obtained using the re-optimized cuts. For
 475 each GRB, we use its direction and predicted energy-
 476 dependent flavor ratio to obtain the analysis-level effec-
 477 tive area of the Testbed as a function of energy. The
 478 effective area $A_{\text{eff}}^i(E)$ of the i^{th} GRB is obtained from
 479 the effective volume using the assumption that the di-
 480 mensions of the detector are significantly smaller than
 481 the interaction lengths [67]:

$$482 A_{\text{eff}}^i(E) \approx \frac{V_{\text{eff}}^i(E)}{l_{\text{int}}(E)}, \quad (2)$$

483 where $V_{\text{eff}}^i(E)$ is the effective volume, calculated using
 484 Eq. (1), and $l_{\text{int}}(E)$ is the neutrino interaction length.
 The latter is given by

$$485 l_{\text{int}}(E) = \frac{m_N}{\sigma_{\nu\text{-}ice}(E)\rho_{\text{ice}}}, \quad (3)$$

486 where ρ_{ice} is the density of ice, $\sigma_{\nu\text{-}ice}(E)$ is the
 487 cross-section of neutrino-nucleon interactions derived
 488 in Ref. [68], and m_N is the nucleon mass.

489 The total expected number of neutrino events is

$$490 N_{\text{exp}}^{\text{total}} = \sum_{i=1}^{57} \left(\int d \log_{10} E \cdot E F^i(E) \cdot A_{\text{eff}}^i(E) \cdot \ln(10) \right), \quad (4)$$

491 where i is the index of the GRB (total 57 GRBs) and
 492 $F^i(E)$ is the neutrino fluence [GeV $^{-1}$ cm $^{-2}$] of the i^{th}

Cut	Delay Difference Cut	Reconstruction Quality Cut		Peak/Correlation Cut
Parameter	On/Off	A_{peak}	$A_{\text{total}} A_{\text{peak}}$	Peak/Corr. Cut Value
Diffuse Neutrino Search	On	$< 50 \text{ deg}^2$	< 1.5	> 8.8
GRB Neutrino Search	Off	$< 140 \text{ deg}^2$	< 16.4	> 7.6

Table 2: Comparison of cut parameter values of the analysis. See text for details.

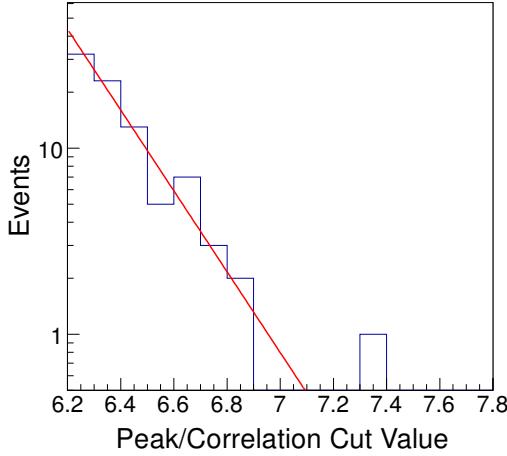


Figure 6: The differential distribution of events found in the background analysis windows of the 10% data set as a function of Peak/Correlation Cut Value after all other cuts have been applied. This distribution is fitted with an exponential function (red line) which is used to extrapolate the number of expected background events for a higher Peak/Correlation Cut Value. The optimized value is 7.6.

GRB . The factor $\ln(10)$ in Eq. (4) is obtained by substituting linear energy integration for logarithmic integration, $dE/E = d \ln(E) = \ln(10) \cdot d \log_{10}(E)$.

Figure 6 shows the differential distribution of background events as a function of the final Peak/Correlation cut. We estimate the expected number of background events by fitting an exponential function to this distribution.

As described at the beginning of the section, we derive the background estimate from the background analysis window for each GRB, which is distinct from the signal window. We consider the background analysis window to be the hour on either side of each GRB time, minus the 10 minutes surrounding each GRB. The 55 minutes on either side of a GRB (total 110 minutes) is a background analysis window and 5 minutes before and after the GRB is a neutrino signal window. A 10-minute period centered around the middle of the T_{90} window should be sufficient to encompass the expected emission period for all the GRBs examined in this study if we as-

sume that gamma rays and neutrinos are produced simultaneously. The 110-minute background period provides sufficient statistics for a study of the background around the times of each GRB. This is the same method used in the ANITA GRB analysis [34].

Using the data in the background analysis windows, we optimize our analysis cuts to give us the best expected limit, and, using these optimized cuts, we obtain the expected number of events from the background and signal windows. We compute the best expected 90% confidence level (C.L.) upper limit F_{UL} on the neutrino fluence by minimizing

$$F_{\text{UL}}(E) = F_{\text{sum}}(E) \cdot \frac{N_{\text{UL}}}{N_{\text{exp}}}, \quad (5)$$

where $F_{\text{sum}}(E)$ is the sum of the neutrino fluences from the 57 GRBs, N_{exp} is the expected number of neutrinos that pass the cuts, and N_{UL} is the 90% C.L. upper limit on the number of signal events given the number of expected background events.

Table 2 summarizes the final set of cut parameters after the optimization. After the optimization, we expect 0.072 events in the signal windows in the entire data set. This background expectation in the signal windows is at approximately the same level as the expected background events in the diffuse neutrino search, but now we achieve a factor of 2.4 improvement in the overall analysis cut efficiency for the summed fluence from the 57 GRBs due to changing the analyzable time by a factor of 566. To obtain the background expectations for the background windows in the 10% and 90% sets, we simply scale the 0.072 events by the livetime in each sample. In the background analysis windows in the 10% subset, we expect 0.079 background events and no events survived.

In the second stage of analysis, we look at the number of events in the background analysis windows in the remaining 90% of the data set. This is to make sure that the background estimation derived from the 10% subset is consistent with what we see in the remaining 90% of the data. In the 57 GRB background analysis windows in the 90% data set we expected 0.72 events and two events survive.

In the final stage of the analysis, we search in the en-

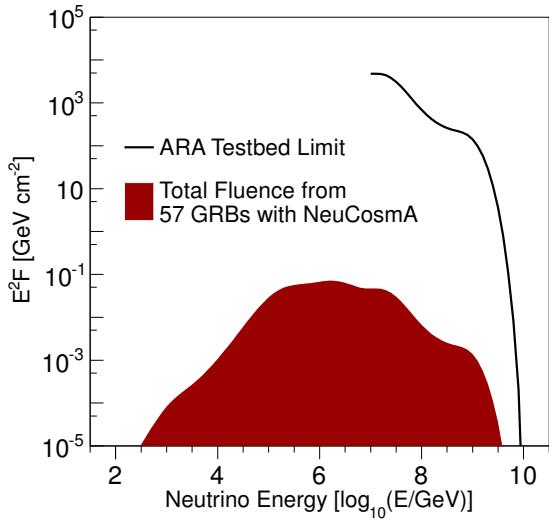


Figure 7: The 90% upper limit on the UHE GRB all-flavor neutrino fluence from 57 GRBs. Total fluence from NeuCosmA for the 57 GRBs is shown with a red shaded area and the limit from the ARA Testbed above 10⁷ GeV is shown with a black solid curve.

tire data set for neutrino events in the signal windows surrounding the 57 GRBs over a total of 570 minutes. We used the same optimized analysis cuts defined in the first analysis stage.

6. Results

6.1. Upper limits on GRB neutrinos

We expected 0.072 background events in the signal region in the entire data set and found no events. From NeuCosmA, the expected number of neutrino events from the 57 GRBs is 2.4×10^{-5} . From simulation, the analysis efficiency for triggered events from the fluence calculated for GRB110426A is 6%. We placed a 90% C.L. limit on the combined fluence from the 57 GRBs.

Figure 7 shows the total, or stacked, fluence from the 57 GRBs calculated with NeuCosmA, and the GRB neutrino fluence limit that we set from 10⁷ to 10¹⁰ GeV. At lower energies, the ARA Testbed sensitivity drops, and 10¹⁰ GeV is the maximum energy with which NeuCosmA emits neutrinos.

In order to compare our limit with those from other experiments that used a different set of GRBs for their analyses, we also provide the inferred quasi-diffuse all-flavor neutrino flux limit. This assumes that the average fluence of the 57 analyzed GRBs is representative of the average fluence from GRBs for any other extended period. With this assumption, the quasi-diffuse neutrino

flux limit $E^2\Phi$ is

$$E^2\Phi = E^2F \times \frac{1}{4\pi} \frac{\dot{N}_{\text{GRB}}^0}{N_{\text{GRB}}}, \quad (6)$$

where E^2F is the fluence limit, $N_{\text{GRB}} = 57$ is the number of analyzed GRBs, and \dot{N}_{GRB}^0 is the average number of GRBs that are potentially observable by satellites per unit time [35], and is chosen as 667/year to be consistent with the IceCube and ANTARES GRB neutrino searches [33, 36].

Figure 8 shows the quasi-diffuse neutrino flux limit from ARA and other experiments. Our limit is the first UHE GRB neutrino quasi-diffuse flux limit at energies above 10⁷ GeV. The sensitivity of IceCube extends to this energy region, but their quasi-diffuse limit is published only below 10⁷ GeV, where their sensitivity is greatest.

6.2. Effects of uncertainties and model parameters

Our calculations are unavoidably affected by uncertainties in the values of astrophysical parameters — on which we expand below — and of particle-physics parameters, including cross sections, multiplicities, and lepton mixing parameters. Astrophysical uncertainties affect each source in a different way, and, in a source sample, partially average out. Particle-physics uncertainties systematically affect the fluxes from all sources in the same way, but are considerably smaller than astrophysical uncertainties; see, *e.g.*, Fig. 19 in Ref. [72] for the effect of the uncertainty on the mixing parameters. We have therefore assumed in our calculations the central values of the particle-physics parameters.

In the calculation of our limits, we assumed nominal values of the astrophysical model parameters. We now comment on the effect of varying these values. Ref. [72] showed the effect on the shape and flavor composition of the diffuse GRB neutrino flux of assuming distributions of values for the magnetic field intensity, bulk Lorentz factor, and shape of the source photon spectrum. In stacking analyses, the combined uncertainties on astrophysical model parameters can lower or raise the quasi-diffuse flux by one order of magnitude [43]. The baryonic loading is particularly poorly known; in our analysis, we adopted the commonly used value of 10 for all bursts [32, 43]. In reality, it could be lower or higher by a factor of 10. Since the baryonic loading linearly scales the neutrino flux, this would shift the flux down or up by one order of magnitude [43].

Another source of uncertainty is the finite size of the GRB sample used to derive the quasi-diffuse flux. For instance, the uncertainty associated to the discrete sampling of the underlying redshift distribution of GRBs

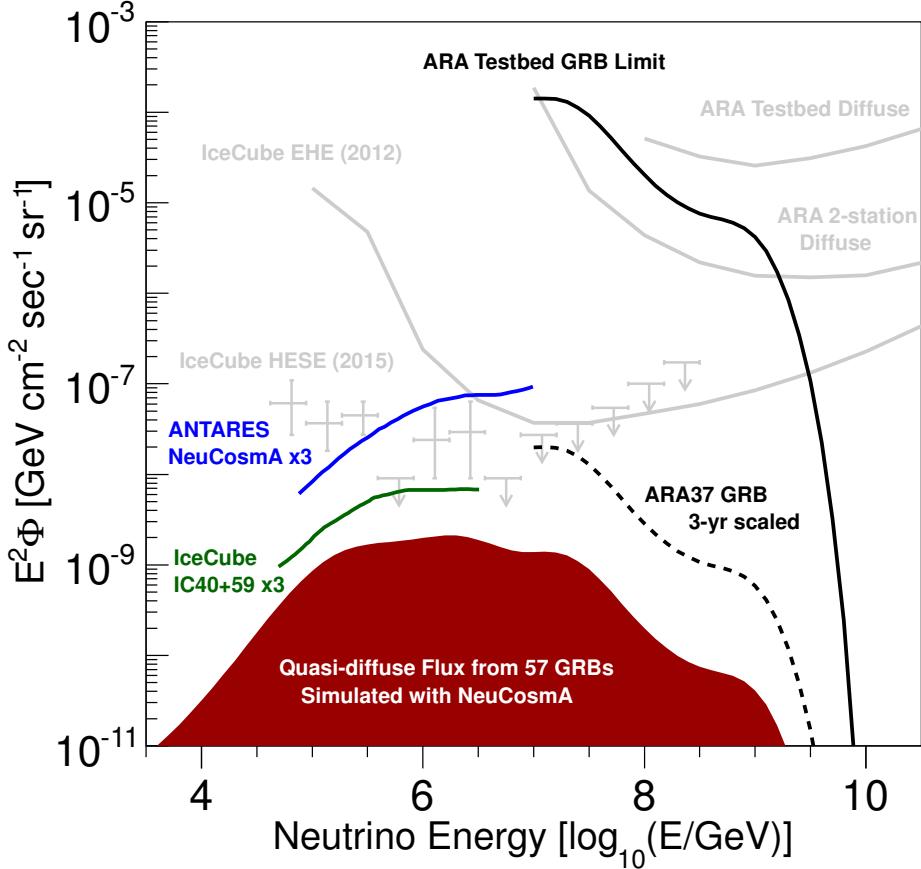


Figure 8: The ARA-Testbed quasi-diffuse all-flavor flux limit. We include limits from IceCube [36] and ANTARES [39] for comparison; we have multiplied them by a factor of 3 to make them all-flavor. IceCube recently published a search for neutrinos from GRBs based on four years of data [37], but did not include a limit on the quasi-diffuse flux. Preliminary estimates indicate that the latest result would improve upon the IC40+59 limit shown here by about an order of magnitude. The ARA37 limit is the trigger-level sensitivity based on scaling the Testbed using factors described in the diffuse neutrino search [29]. For reference, several diffuse limits have been included (in grey): the Testbed diffuse flux limit [29], the ARA 2-station diffuse limit [30], and the 2012 Extremely High Energy (EHE) diffuse limits from IceCube[69]. The points in grey represent the fluxes from the IceCube high-energy starting events (HESE) using 3 years of IceCube data [70]. For comparison, the Waxman-Bahcall upper bound on the neutrino flux from UHECR thin sources is $3.4 \times 10^{-8} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ [42, 71].

ranges from 56%–72%, for a sample of 50 bursts (the present analysis uses 57 bursts), to 25%–28%, for a sample of 1000 bursts (90% C.L.) [72].

While we have considered GRB jets whose baryonic content is dominated by protons, GRBs might be able to synthesize [73, 74, 75] and accelerate [76, 77, 78, 79, 59, 60] nuclei. If nuclei can reach energies as high as protons, neutrino fluxes are comparable [59]; otherwise, neutrino yields from nuclei could be up to two orders of magnitude lower [77]. An exploration of GRB neutrino limits assuming different jet mass compositions is beyond the scope of this paper.

Alternative fireball emission models, such as sub-photospheric [80, 81, 82, 83, 84, 85] and magnetic re-

connection [86, 87, 88, 89] models, may result in quasi-diffuse neutrino fluxes up to one order of magnitude lower than the flux from the internal-collision model we adopted [37, 38].

While our results in Figs. 7 and 8 use average, energy-dependent flavor ratios at Earth (see Section 5.2), we considered the impact of variations in flavor ratios. In Ref. [90], it is argued that for $(1 : 2 : 0)_{\oplus}$ flavor ratios at the source, high-energy neutrinos from astrophysical sources can reach Earth with ratios $(x : 1 : 1)_{\oplus}$ where $0.57 < x < 2.5$, and Ref. [91] finds an electron fraction between 20% and 59%, corresponding to the range $0.5 < x < 2.9$. For $(1 : 1 : 1)_{\oplus}$ ratios in the incident flux, at the trigger level the ratios of detected neutrinos

654 become (2 : 1 : 1), and, at the analysis level, they be- 704
655 come (6 : 1 : 1). Due to this effect, neutrino fluxes 705
656 with flavor ratios of (0.5 : 1 : 1)_⊕ and (2.9 : 1 : 1)_⊕, 706
657 with the same all-flavor normalization, would result in a 707
658 25% lower and 50% higher number of neutrinos passing 708
659 the trigger and analysis cuts, respectively, and a corre- 709
660 sponding weakening or strengthening of the limits. 710
711

661 7. Future prospects

662 For future analyses **using** two ARA deep stations, we 712
663 expect to have at least a factor of 6 improvement in 713
664 sensitivity **compared to this one using Testbed data as- 714**
665 **suming the same analysis with similar cuts.** There is 715
666 a factor of ~ 3 expected increase going from the shal- 716
667 low Testbed station to a 200 m deep-station and another 717
668 factor of ~ 2 for the number of deep stations currently 718
669 operating. In addition, we plan to increase the num- 719
670 ber of deep stations. Fig. 8 shows the expected ARA37 720
671 trigger-level limit based on these and other improve- 721
672 ment factors similar to those described for the diffuse 722
673 neutrino search [29]. Below, we motivate an expecta- 723
674 tion for a high analysis efficiency in future ARA GRB 724
675 analyses. Furthermore, the implementation of a phased 725
676 array trigger design, as described in Ref. [92], **currently** 726
677 **funded for an initial deployment in 2017-2018,** would 727
678 decrease the trigger threshold and improve the sensitiv- 728
679 ity **to** neutrinos from GRBs. 729

680 In the future, by restricting our GRB searches in di- 730
681 rection (so as not to include the South Pole direction), 731
682 and by improving the way we reject CW backgrounds, 732
683 we expect that we may eliminate all cuts but those de- 733
684 signed to reject thermal noise. ARA has the ability to 734
685 reconstruct the directions of RF signals, and we **plan** to 735
686 develop the capability of reconstructing neutrino direc- 736
687 tions **also**, using polarization and spectral information. 737
688 In addition, we are working to replace our CW cuts with 738
689 filters. Keeping only cuts designed to reject thermal 739
690 noise would leave the Reconstruction Quality Cut and 740
691 the Peak/Correlation Cut as those with an important im- 741
692 pact on our sensitivity. With only these cuts, we find 742
693 that the analysis efficiency for the dominant GRB flu- 743
694 ence in this paper increases from 6% to 14%, a factor of 744
695 2.3 increase beyond the increases mentioned above due 745
696 to expansion of the array. 746
747

748 Improvements in the reconstruction by using an algo- 749
749 rithm that solves for event distance and additional anten- 750
750 nas in design stations are expected to lead to improve- 751
751 ments in the analysis efficiency by an additional fac- 752
752 tor of a few. Although the Reconstruction Quality Cut 753
753 was significantly relaxed here compared to the diffuse 754
754 analysis [29], its efficiency against simulated triggered 755
755

756 events was $\sim 30\%$, primarily rejecting events with a low 757
758 signal-to-noise ratio (SNR). Improvements to the recon- 759
759 struction method under development will be able to in- 760
760 crease the efficiency of reconstructing these low-SNR 761
761 events. Additionally, in the design stations, the number 762
762 of pairs of antennas of each polarization contributing to 763
763 the interferometric map increases from 6 to 28, which 764
764 is expected to improve the efficiency, in particular, by 765
765 giving low-SNR events a higher peak correlation value 766
766 to differentiate it from noise. 767

768 8. Conclusions

769 Using data from the ARA Testbed **station** from Jan- 770
770 uary 2011 to December 2012, we have searched for 771
771 UHE neutrinos from GRBs. **We selected 57 GRBs that 772**
772 **occurred during this period within the field of view of 773**
773 **the Testbed. We searched for GRB neutrinos in a time 774**
774 **window around each burst. The resulting reduced back- 775**
775 **ground allowed us to loosen our analysis cuts and im- 776**
776 **prove our analysis efficiency for neutrinos from the 57 777**
777 **GRBs by a factor of 2.4. The GRB neutrino spectra 778**
778 **were calculated using NeuCosmA, an advanced high- 779**
779 **energy astrophysical neutrino fluence generator.** 780

781 We found zero **events passing the cuts for our search,** 782
782 which is consistent with the expectation. We obtained 783
783 a GRB neutrino fluence limit and the first quasi-diffuse 784
784 GRB neutrino flux limit for energies above 10^7 GeV. 785

786 Future analyses from two ARA deep stations are ex- 787
787 pected to have at least a factor-of-6 improvement in sen- 788
788 sitivity **compared to the present analysis with the ARA 789**
789 **Testbed, assuming the same cuts.** Another factor of 790
790 about 10 is feasible from planned developments in re- 791
791 construction and CW filtering capabilities at the analy- 792
792 sis stage with the current deep station design. 793

794 9. Acknowledgements

795 We thank Chris Weaver from the University of Wis- 796
796 consin for his work developing the RaySolver algo- 797
797 rithm used in AraSim. We thank the National Sci- 798
798 ence Foundation for their support through NSF Grant 799
799 1404266, Grant NSF OPP-1002483 and Grant NSF 800
800 OPP-1359535, Taiwan National Science Councils Van- 801
801 guard Program: NSC 102-2628-M-002-010 and the 802
802 the FRSFNRS (Belgium). A. Connolly would like to 803
803 thank the National Science Foundation for their sup- 804
804 port through CAREER award 1255557. A. Connolly, 805
805 H. Landsman, D. Guetta and D. Besson would like to 806
806 thank the United States-Israel Binational Science Foun- 807
807 dation for their support through Grant 2012077. A. 808
808

751 Connolly, A. Karle and J. Kelley would also like to
 752 thank the National Science Foundation for the support
 753 through BIGDATA Grant 1250720. K. Hoffman would
 754 like to thank the National Science Foundation for their
 755 support through CAREER award 0847658. We also
 756 acknowledge the University of Wisconsin Alumni Re-
 757 search Foundation, the University of Maryland and the
 758 Ohio State University for their support. We are grate-
 759 ful to the U.S. National Science Foundation-Office of
 760 Polar Programs, the U.S. National Science Foundation-
 761 Physics Division, and the Ohio Supercomputer Center.
 762 M. Bustamante was partially supported by NSF Grant
 763 PHY-1404311 to J. F. Beacom.

764 [1] M. J. Rees, P. Meszaros, Relativistic fireballs - energy con-
 765 version and time - scales, *Mon. Not. Roy. Astron. Soc.* 258 (1992)
 766 41–43.
 767 [2] P. Meszaros, M. J. Rees, High entropy fireballs and jets in
 768 gamma-ray burst sources, *Mon. Not. Roy. Astron. Soc.* 257
 769 (1992) 29–31.
 770 [3] P. Meszaros, M. J. Rees, Relativistic fireballs and their impact
 771 on external matter - Models for cosmological gamma-ray bursts,
 772 *Astrophys. J.* 405 (1993) 278. doi:10.1086/172360.
 773 [4] T. Piran, Gamma-ray bursts and the fireball model, *Phys.
 774 Rept.* 314 (1999) 575–667. arXiv:astro-ph/9810256,
 775 doi:10.1016/S0370-1573(98)00127-6.
 776 [5] E. Waxman, Gamma-ray bursts: The Underlying model, *Lect.
 777 Notes Phys.* 598 (2003) 393. arXiv:astro-ph/0303517.
 778 [6] M. J. Rees, P. Meszaros, Unsteady outflow models for cosmo-
 779 logical gamma-ray bursts, *Astrophys. J.* 430 (1994) L93–L96.
 780 arXiv:astro-ph/9404038, doi:10.1086/187446.
 781 [7] R. Sari, T. Piran, Variability in GRBs: A Clue, *Astrophys. J.* 485
 782 (1997) 270. arXiv:astro-ph/9701002, doi:10.1086/304428.
 783 [8] E. Waxman, J. N. Bahcall, High-energy neutrinos from
 784 cosmological gamma-ray burst fireballs, *Phys. Rev.
 785 Lett.* 78 (1997) 2292–2295. arXiv:astro-ph/9701231,
 786 doi:10.1103/PhysRevLett.78.2292.
 787 [9] D. Guetta, D. Hooper, J. Alvarez-Muniz, F. Halzen, E. Reuveni,
 788 Neutrinos from individual gamma-ray bursts in the BATSE
 789 catalog, *Astropart. Phys.* 20 (2004) 429–455. arXiv:astro-
 790 ph/0302524, doi:10.1016/S0927-6505(03)00211-1.
 791 [10] R. Sari, T. Piran, R. Narayan, Spectra and light curves of
 792 gamma-ray burst afterglows, *Astrophys. J.* 497 (1998) L17.
 793 arXiv:astro-ph/9712005, doi:10.1086/311269.
 794 [11] P. Meszaros, Gamma-ray burst afterglows and their implica-
 795 tions, *Astron. Astrophys. Suppl. Ser.* 138 (1999) 533–536.
 796 arXiv:astro-ph/9812478, doi:10.1051/aa:1999341.
 797 [12] E. Waxman, J. N. Bahcall, Neutrino afterglow from gamma-ray
 798 bursts: Similar to 10^{18} eV, *Astrophys. J.* 541 (2000) 707–711.
 799 arXiv:hep-ph/9909286, doi:10.1086/309462.
 800 [13] M. Aartsen, et al., *Phys. Rev. Lett.* 111 (2013) 021103.
 801 arXiv:1304.5356, doi:10.1103/PhysRevLett.111.021103.
 802 [14] M. Aartsen, et al., Evidence for High-Energy Extraterrestrial
 803 Neutrinos at the IceCube Detector, *Science* 342 (6161) (2013)
 804 1242856. arXiv:1311.5238, doi:10.1126/science.1242856.
 805 [15] M. G. Aartsen, et al., Search for a diffuse flux of astro-
 806 physical muon neutrinos with the IceCube 59-string configura-
 807 tion, *Phys. Rev. D* 89 (6) (2014) 062007. arXiv:1311.7048,
 808 doi:10.1103/PhysRevD.89.062007.
 809 [16] M. Aartsen, et al., Observation of High-Energy Astro-
 810 physical Neutrinos in Three Years of IceCube Data,
 811 *Phys. Rev. Lett.* 113 (2014) 101101. arXiv:1405.5303,

812 doi:10.1103/PhysRevLett.113.101101.
 813 [17] M. G. Aartsen, et al., A combined maximum-likelihood analy-
 814 sis of the high-energy astrophysical neutrino flux measured with
 815 IceCube, *Astrophys. J.* 809 (1) (2015) 98. arXiv:1507.03991,
 816 doi:10.1088/0004-637X/809/1/98.
 817 [18] M. G. Aartsen, et al., Evidence for Astrophysical Muon
 818 Neutrinos from the Northern Sky with IceCube, *Phys.
 819 Rev. Lett.* 115 (8) (2015) 081102. arXiv:1507.04005,
 820 doi:10.1103/PhysRevLett.115.081102.
 821 [19] A. L. Connolly, A. G. Vieregg, Radio Detection of High Energy
 822 Neutrinos arXiv:1607.08232.
 823 [20] G. A. Askaryan, Excess Negative Charge of an Electron-Photon
 824 Shower And Its Coherent Radio Emission, *JETP* 14 (1962) 441.
 825 [21] G. A. Askaryan, Coherent Radio Emission from Cosmic Show-
 826 ers in Air and in Dense Media, *JETP* 21 (1965) 658.
 827 [22] E. Zas, F. Halzen, T. Stanev, Electromagnetic pulses from high-
 828 energy showers: Implications for neutrino detection, *Phys. Rev.
 829 D* 45 (1992) 362–376. doi:10.1103/PhysRevD.45.362.
 830 [23] P. Gorham, et al., Radio-frequency measurements of coher-
 831 ent transition and Cherenkov radiation: Implications for high-
 832 energy neutrino detection, *Phys. Rev. E* 62 (2000) 8590–8605.
 833 arXiv:hep-ex/0004007, doi:10.1103/PhysRevE.62.8590.
 834 [24] D. Saltzberg, et al., Observation of the Askaryan effect, *AIP
 835 Conf. Proc.* 579 (2001) 225–233. doi:10.1063/1.1398175.
 836 [25] P. W. Gorham, et al., Accelerator measurements of the Askaryan
 837 effect in rock salt: A roadmap toward Teraton underground neu-
 838 trino detectors, *Phys. Rev. D* 72 (2005) 023002. arXiv:astro-
 839 ph/0412128, doi:10.1103/PhysRevD.72.023002.
 840 [26] P. W. Gorham, et al., Observations of the Askaryan effect in
 841 ice, *Phys. Rev. Lett.* 99 (2007) 171101. arXiv:hep-ex/0611008,
 842 doi:10.1103/PhysRevLett.99.171101.
 843 [27] P. Allison, J. Auffenberg, R. Bard, J. Beatty, D. Besson,
 844 et al., Design and Initial Performance of the Askaryan Rad-
 845 io Array Prototype EeV Neutrino Detector at the South
 846 Pole, *Astropart. Phys.* 35 (2012) 457–477. arXiv:1105.2854,
 847 doi:10.1016/j.astropartphys.2011.11.010.
 848 [28] S. Barwick, D. Besson, P. Gorham, D. Saltzberg, South Polar in
 849 situ radio-frequency ice attenuation, *J. Glaciol.* 51 (2005) 231–
 850 238. doi:10.3189/172756505781829467.
 851 [29] P. Allison, et al., First Constraints on the Ultra-High Energy
 852 Neutrino Flux from a Prototype Station of the Askaryan Rad-
 853 io Array, *Astropart. Phys.* 70 (2015) 62–80. arXiv:1404.5285,
 854 doi:10.1016/j.astropartphys.2015.04.006.
 855 [30] P. Allison, et al., Performance of two Askaryan Radio Array
 856 stations and first results in the search for ultrahigh energy neu-
 857 trinos, *Phys. Rev. D* 93 (8) (2016) 082003. arXiv:1507.08991,
 858 doi:10.1103/PhysRevD.93.082003.
 859 [31] M. Ackermann, et al., Optical properties of deep glacial ice at
 860 the South Pole, *Journal of Geophysical Research* 111 (2006)
 861 D13203. doi:10.1029/2005JD006687.
 862 [32] R. Abbasi, et al., Search for muon neutrinos from Gamma-
 863 Ray Bursts with the IceCube neutrino telescope, *Astrophys.
 864 J.* 710 (2010) 346–359. arXiv:0907.2227, doi:10.1088/0004-
 865 637X/710/1/346.
 866 [33] S. Adrian-Martinez, et al., Search for Cosmic Neutrino Point
 867 Sources with Four Year Data of the ANTARES Telescope, *Ast-
 868 rophys. J.* 760 (2012) 53. arXiv:1207.3105, doi:10.1088/0004-
 869 637X/760/1/53.
 870 [34] A. Vieregg, K. Palladino, P. Allison, B. Baughman, J. Beatty,
 871 et al., The First Limits on the Ultra-high Energy Neutrino Flu-
 872 ence from Gamma-ray Bursts, *Astrophys. J.* 736 (2011) 50.
 873 arXiv:1102.3206, doi:10.1088/0004-637X/736/1/50.
 874 [35] R. Abbasi, et al., Limits on Neutrino Emission from
 875 Gamma-Ray Bursts with the 40 String IceCube Detector,
 876 *Phys. Rev. Lett.* 106 (2011) 141101. arXiv:1101.1448,

877 doi:10.1103/PhysRevLett.106.141101. 942

878 [36] R. Abbasi, et al., An absence of neutrinos associated with 943
879 cosmic-ray acceleration in γ -ray bursts, *Nature* 484 (2012) 351– 944
880 353. arXiv:1204.4219, doi:10.1038/nature11068. 945

881 [37] M. Aartsen, et al., Search for Prompt Neutrino Emission from 946
882 Gamma-Ray Bursts with IceCube, *Astrophys. J.* 805 (1) (2015) 947
883 L5. arXiv:1412.6510, doi:10.1088/2041-8205/805/1/L5. 948

884 [38] M. G. Aartsen, et al., An All-Sky Search for Three Flavors of 949
885 Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino 950
886 Observatory arXiv:1601.06484. 951

887 [39] S. Adrian-Martinez, et al., Search for muon neutrinos from 952
888 gamma-ray bursts with the ANTARES neutrino telescope us- 953
889 ing 2008 to 2011 data, *Astron. Astrophys.* 559 (2013) A9. 954
890 arXiv:1307.0304, doi:10.1051/0004-6361/201322169. 955

891 [40] S. Razzaque, J. A. Adams, P. Harris, D. Besson, Lim- 956
892 its on the Transient Ultrahigh Energy Neutrino Flux from 957
893 Gamma-Ray Bursts (GRB) Derived from RICE Data, *As- 958
894 tropart. Phys.* 26 (2007) 367–377. arXiv:astro-ph/0605480, 959
895 doi:10.1016/j.astropartphys.2006.07.008. 960

896 [41] M. G. Aartsen, et al., Energy Reconstruction Methods in 961
897 the IceCube Neutrino Telescope, *JINST* 9 (2014) P03009. 962
898 arXiv:1311.4767, doi:10.1088/1748-0221/9/03/P03009. 963

899 [42] E. Waxman, J. N. Bahcall, High-energy neutrinos 964
900 from astrophysical sources: An Upper bound, *Phys. 965
901 Rev. D* 59 (1999) 023002. arXiv:hep-ph/9807282, 966
902 doi:10.1103/PhysRevD.59.023002. 967

903 [43] S. Hummer, P. Baerwald, W. Winter, Neutrino Emis- 968
904 sion from Gamma-Ray Burst Fireballs, Revised, *Phys. 969
905 Rev. Lett.* 108 (2012) 231101. arXiv:1112.1076, 970
906 doi:10.1103/PhysRevLett.108.231101. 971

907 [44] M. Ageron, J. Aguilar, I. Al Samarai, A. Albert, F. Ameli, 972
908 et al., ANTARES: the first undersea neutrino telescope, *Nucl. 973
909 Instrum. Meth. A* 656 (2011) 11–38. arXiv:1104.1607, 974
910 doi:10.1016/j.nima.2011.06.103. 975

911 [45] I. Kravchenko, S. Hussain, D. Seckel, D. Besson, E. Fen- 976
912 sholt, J. Ralston, J. Taylor, K. Ratzlaff, R. Young, Up- 977
913 dated Results from the RICE Experiment and Future Prospects 978
914 for Ultra-High Energy Neutrino Detection at the South 979
915 Pole, *Phys. Rev. D* 85 (2012) 062004. arXiv:1106.1164, 980
916 doi:10.1103/PhysRevD.85.062004. 981

917 [46] S. Hoover, et al., Observation of Ultra-high-energy Cos- 982
918 mic Rays with the ANITA Balloon-borne Radio Interferometer, *Phys. Rev. Lett.* 105 (2010) 151101. arXiv:1005.0035, 983
919 doi:10.1103/PhysRevLett.105.151101. 984

920 [47] P. Gorham, et al., Erratum: Observational Constraints on the 986
922 Ultra-high Energy Cosmic Neutrino Flux from the Second 987
923 Flight of the ANITA Experiment, *Phys. Rev. D* 85 (2012) 988
924 049901. arXiv:1011.5004, doi:10.1103/PhysRevD.82.022004, 989
925 10.1103/PhysRevD.85.049901. 990

926 [48] S. Hummer, M. Ruger, F. Spanier, W. Winter, Simplified 991
927 models for photohadronic interactions in cosmic accelerators, *Astrophys. J.* 721 (2010) 630–652. arXiv:1002.1310, 992
928 doi:10.1088/0004-637X/721/1/630. 993

929 [49] D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, 995
930 et al., BATSE observations of gamma-ray burst spectra. 996
931 1. Spectral diversity., *Astrophys. J.* 413 (1993) 281–292. 997
932 doi:10.1086/172995. 998

933 [50] J. A. Aguilar, Online Gamma-Ray Burst catalog for neu- 999
935 trino telescopes, in: *Proceedings, 32nd International Cos- 1000
936 mic Ray Conference (ICRC 2011)*, Vol. 8, 2011, p. 235. 1001
937 arXiv:1110.5946, doi:10.7529/ICRC2011/V08/1063. 1002

938 [51] <http://gcn.gsfc.nasa.gov>. 1003

939 [52] <http://icecube.wisc.edu/science/tools>. 1004

940 [53] J. P. Rachen, P. Meszaros, Photohadronic neutrinos from tran- 1005
941 sients in astrophysical sources, *Phys. Rev. D* 58 (1998) 123005. 1006
arXiv:astro-ph/9802280, doi:10.1103/PhysRevD.58.123005.

[54] P. Lipari, M. Lusignoli, D. Meloni, Flavor Composition and Energy Spectrum of Astrophysical Neutrinos, *Phys. Rev. D* 75 (2007) 123005. arXiv:0704.0718, doi:10.1103/PhysRevD.75.123005.

[55] P. Baerwald, S. Hummer, W. Winter, Magnetic Field and Flavor Effects on the Gamma-Ray Burst Neutrino Flux, *Phys. Rev. D* 83 (2011) 067303. arXiv:1009.4010, doi:10.1103/PhysRevD.83.067303.

[56] A. Mucke, R. Engel, J. Rachen, R. Protheroe, T. Stanev, SOPHIA: Monte Carlo simulations of photohadronic processes in astrophysics, *Comput. Phys. Commun.* 124 (2000) 290–314. arXiv:astro-ph/9903478, doi:10.1016/S0010-4655(99)00446-4.

[57] P. Baerwald, M. Bustamante, W. Winter, UHECR escape mechanisms for protons and neutrons from GRBs, and the cosmic ray-neutrino connection, *Astrophys. J.* 768 (2013) 186. arXiv:1301.6163, doi:10.1088/0004-637X/768/2/186.

[58] P. Baerwald, M. Bustamante, W. Winter, Are gamma-ray bursts the sources of ultra-high energy cosmic rays?, *Astropart. Phys.* 62 (2015) 66–91. arXiv:1401.1820, doi:10.1016/j.astropartphys.2014.07.007.

[59] N. Globus, D. Allard, R. Mochkovitch, E. Parizot, UHECR acceleration at GRB internal shocks, *Mon. Not. Roy. Astron. Soc.* 451 (1) (2015) 751–790. arXiv:1409.1271, doi:10.1093/mnras/stv893.

[60] M. Bustamante, P. Baerwald, K. Murase, W. Winter, Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts, *Nature Commun.* 6 (2015) 6783. arXiv:1409.2874, doi:10.1038/ncomms7783.

[61] M. Bustamante, K. Murase, W. Winter, Multi-messenger light curves from gamma-ray bursts in the internal shock model arXiv:1606.02325.

[62] J. Alvarez-Muniz, A. Romero-Wolf, E. Zas, Practical and accurate calculations of Askaryan radiation, *Phys. Rev. D* 84 (2011) 103003. arXiv:1106.6283, doi:10.1103/PhysRevD.84.103003.

[63] L. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies, *Dokl. Akad. Nauk Ser. Fiz.* 92 (1953) 535–536.

[64] L. Landau, I. Pomeranchuk, Electron cascade process at very high-energies, *Dokl. Akad. Nauk Ser. Fiz.* 92 (1953) 735–738.

[65] A. B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies, *Phys. Rev.* 103 (1956) 1811–1820. doi:10.1103/PhysRev.103.1811.

[66] J. Alvarez-Muniz, E. Zas, Cherenkov radio pulses from EeV neutrino interactions: The LPM effect, *Phys. Lett. B* 411 (1997) 218–224. arXiv:astro-ph/9706064, doi:10.1016/S0370-2693(97)01009-5.

[67] D. R. Williams, The Askaryan effect and detection of extremely high energy neutrinos in the lunar regolith and salt, Ph.D. thesis, UCLA.

[68] A. Connolly, R. S. Thorne, D. Waters, Calculation of High Energy Neutrino-Nucleon Cross Sections and Uncertainties Using the MSTW Parton Distribution Functions and Implications for Future Experiments, *Phys. Rev. D* 83 (2011) 113009. arXiv:1102.0691, doi:10.1103/PhysRevD.83.113009.

[69] M. Aartsen, et al., Probing the origin of cosmic-rays with extremely high energy neutrinos using the IceCube Observatory, *Phys. Rev. D* 88 (2013) 112008. arXiv:1310.5477.

[70] M. G. Aartsen, et al., The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors, in: *Proceedings, 34th International Cosmic Ray Conference (ICRC 2015)*: The Hague, The Netherlands, July 30-August 6, 2015, 2015. arXiv:1510.05223.

[71] E. Waxman, The origin of IceCube’s neutrinos: Cos-

1007 mic ray accelerators embedded in star forming calorimeter- 1072
 1008 arXiv:1511.00815.
 1009 [72] P. Baerwald, S. Hummer, W. Winter, Systematics in the Inter- 1073
 1010 pretation of Aggregated Neutrino Flux Limits and Flavor Ratios 1074
 1011 from Gamma-Ray Bursts, *Astropart. Phys.* 35 (2012) 508–529. 1075
 1012 arXiv:1107.5583, doi:10.1016/j.astropartphys.2011.11.005. 1076
 1013 [73] M. Lemoine, Nucleosynthesis in gamma-ray bursts outflows, 1077
 1014 *Astron. Astrophys.* 390 (2002) L31. arXiv:astro-ph/0205093, 1078
 1015 doi:10.1051/0004-6361:20020939. 1079
 1016 [74] A. M. Beloborodov, Nuclear composition of gamma-ray burst 1080
 1017 fireballs, *Astrophys. J.* 588 (2003) 931–944. arXiv:astro- 1081
 1018 ph/0210522, doi:10.1086/374217. 1082
 1019 [75] B. D. Metzger, D. Giannios, S. Horiuchi, Heavy Nuclei Synthe- 1083
 1020 sized in Gamma-Ray Burst Outflows as the Source of UHECRs, 1084
 1021 *Mon. Not. Roy. Astron. Soc.* 415 (2011) 2495. arXiv:1101.4019, 1085
 1022 doi:10.1111/j.1365-2966.2011.18873.x.
 1023 [76] M. Vietri, On the acceleration of ultrahigh-energy cosmic 1086
 1024 rays in gamma-ray bursts, *Astrophys. J.* 453 (1995) 883–889. 1087
 1025 arXiv:astro-ph/9506081, doi:10.1086/176448.
 1026 [77] K. Murase, K. Ioka, S. Nagataki, T. Nakamura, High- 1088
 1027 energy cosmic-ray nuclei from high- and low-luminosity 1089
 1028 gamma-ray bursts and implications for multi-messenger as- 1090
 1029 tronomy, *Phys. Rev. D* 78 (2008) 023005. arXiv:0801.2861, 1091
 1030 doi:10.1103/PhysRevD.78.023005.
 1031 [78] K. Murase, J. F. Beacom, Very-High-Energy Gamma-Ray Sig- 1092
 1032 nal from Nuclear Photodisintegration as a Probe of Extragalac- 1093
 1033 tic Sources of Ultrahigh-Energy Nuclei, *Phys. Rev. D* 82 (2010) 1094
 1034 043008. arXiv:1002.3980, doi:10.1103/PhysRevD.82.043008.
 1035 [79] S. Horiuchi, K. Murase, K. Ioka, P. Meszaros, The sur- 1095
 1036 vival of nuclei in jets associated with core-collapse super- 1096
 1037 novae and gamma-ray bursts, *Astrophys. J.* 753 (2012) 69. 1097
 1038 arXiv:1203.0296, doi:10.1088/0004-637X/753/1/69.
 1039 [80] M. J. Rees, P. Meszaros, Dissipative photosphere models of 1098
 1040 gamma-ray bursts and x-ray flashes, *Astrophys. J.* 628 (2005) 1099
 1041 847–852. arXiv:astro-ph/0412702, doi:10.1086/430818.
 1042 [81] A. Pe'er, P. Meszaros, M. J. Rees, Peak energy clustering and 1100
 1043 efficiency in compact objects, *Astrophys. J.* 635 (2005) 476– 1101
 1044 480. arXiv:astro-ph/0504346, doi:10.1086/497360.
 1045 [82] A. M. Beloborodov, Collisional mechanism for GRB emission, 1102
 1046 *Mon. Not. Roy. Astron. Soc.* 407 (2010) 1033. arXiv:0907.0732, 1103
 1047 doi:10.1111/j.1365-2966.2010.16770.x.
 1048 [83] F. Ryde, et al., Observational evidence of dissipative pho- 1104
 1049 tospheres in gamma-ray bursts, *Mon. Not. Roy. Astron. Soc.* 415 (2011) 1105
 1050 3693. arXiv:1103.0708, doi:10.1111/j.1365- 1106
 1051 2966.2011.18985.x.
 1052 [84] A. Levinson, Observational signatures of sub-photospheric 1107
 1053 radiation mediated shocks in the prompt phase of GRBs, *Astro- 1108
 1054 phys. J.* 756 (2012) 174. arXiv:1205.3227, doi:10.1088/0004- 1109
 1055 637X/756/2/174.
 1056 [85] S. Keren, A. Levinson, Sub-photospheric, radiation-mediated 1110
 1057 shocks in Gamma-Ray Busts: Multiple shock emission and the 1111
 1058 Band spectrum, *Astrophys. J.* 789 (2014) 128. arXiv:1404.7274, 1112
 1059 doi:10.1088/0004-637X/789/2/128.
 1060 [86] D. Giannios, The peak energy of dissipative GRB photospheres, 1113
 1061 *Mon. Not. Roy. Astron. Soc.* 422 (2012) 3092. arXiv:1111.4258, 1114
 1062 doi:10.1111/j.1365-2966.2012.20825.x.
 1063 [87] J. C. McKinney, D. A. Uzdensky, A Reconnection Switch 1115
 1064 to Trigger Gamma-Ray Burst Jet Dissipation, *Mon. Not. Roy. 1116
 1065 Astron. Soc.* 419 (2012) 573–607. arXiv:1011.1904, 1117
 1066 doi:10.1111/j.1365-2966.2011.19721.x.
 1067 [88] F. Yuan, B. Zhang, Episodic Jets as the Central Engine of 1118
 1068 Gamma-Ray Bursts, *Astrophys. J.* 757 (2012) 56. arXiv:1207.6153, 1119
 1069 doi:10.1088/0004-637X/757/1/56.
 1070 [89] B. Zhang, B. Zhang, Gamma-Ray Burst Prompt Emission Light 1120
 1071 Curves and Power Density Spectra in the ICMART Model, As- 1121
 1072 trophys. J. 782 (2014) 92. arXiv:1312.7701, doi:10.1088/0004- 1123
 1073 637X/782/2/92.
 1074 [90] S. Pakvasa, Neutrino Flavor Goniometry by High Energy As- 1124
 1075 trophysical Beams, *Mod. Phys. Lett. A* 23 (2008) 1313–1324. 1125
 1076 arXiv:0803.1701, doi:10.1142/S0217732308027680.
 1077 [91] M. Bustamante, J. F. Beacom, W. Winter, Theoretically palat- 1126
 1078 able flavor combinations of astrophysical neutrinos, *Phys. 1127
 1079 Rev. Lett.* 115 (16) (2015) 161302. arXiv:1506.02645, 1128
 1080 doi:10.1103/PhysRevLett.115.161302.
 1081 [92] A. G. Vieregg, K. Bechtol, A. Romero-Wolf, A Technique for 1129
 1082 Detection of PeV Neutrinos Using a Phased Radio Array, *JCAP* 1130
 1083 1602 (02) (2016) 005. arXiv:1504.08006, doi:10.1088/1475- 1131
 1084 7516/2016/02/005.