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1 Introduction

The BuckArray is a prototype array of symbiotic radio-frequency (RF) and cosmic-ray muons and
photon counters. If feasible, the prototype will be deployed in Apple Creek, Ohio, on a land managed
by the OARDC branch of The Ohio State University, having a two-fold purpose: to serve as and
engineering prototype for future, larger-scale arrays, and to be a educational outreach opportunity for
local area people, to learn about astroparticle physics.

The prototype is planned to consist of 200-400 MHz radio antennas and smartphones, engineered
to be particle detectors. This instrumentation will be sustainably powered through photo-voltaic
panels, and have minimal impact on the land. The physics goal is to detect cosmic-ray extensive air
showers (EAS) via the natural RF and muonic signatures at ground level.

Thus far, only analysis on the muonic signature has been done, and is still in progress.

2 Simulation

We want to test the feasibility of Buckarray. This is to be done by simulating cosmic ray showers,
and estimating the number of detectableEI particles expected to hit the array. The simulations are
performed with CORSIKA.

By using the simulation program CORSIKA, we can obtain information about secondary particles
in a cosmic ray shower. This information includes the type of particle, its momentum (ps, py, p-)
and position at a given observation level, among others described in the documentation of CORSIKA.
This program also allows us to control features such as the type and energy of the primary particle,
its position (i.e. altitude, polar coordinates), the Earth magnetic field, observation levels (up to
10 altitudes at which we can gather information about the secondary particles), and among others.
Additionally, we will use COREAS, a C++ code for the simulation of CORSIKA-based Radio Emission
from Air Showers, which allow us to calculate the radio signal strength that would be (ideally) detected
by an antenna near the region.

For our trial, we have been using protons as primary particles, with energies in the range 10'° —
10'® eV, with random initial position. The geomagnetic field and altitude have been modified to those
of Wooster, Ohio, where Buckarray is planned to be set.

1 With detectable, we mean muons of some energy and above



Roughly, the Buckarray design we have been using consist of an array of 143 cell-phones arranged
in an approximately 50 m X 50 m rectangle, as showed in Figure
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Figure 1: Array of detectors. Each square represents a cellphone (not drawn to scale).

We also tested with the geometry showed in Figure 2l However, based on what we obtained from
simulations, see Figure [3| we opted for the normal array (Fig . Keep?

Our testing has mainly consisted of counting the number of electrons, positrons, muons, anti-
muons, or photons that hit the camera in any of the phones, for a given camera area. Similarly, some
cuts are placed in the simulation in order to account for the particle’s energy loss when traveling
through the cell-phone/camera glass, i.e., we calculated the minimum amount of energy needed for
the particle to travel throughout the camera glass.

Our cuts are based on the energy loss calculated by using the Bethe-Bloch and Bethe-Heitler
formulas for electrons and positrons (See Figure 4). By using our codes, we estimated that, for a
primary proton of 10'® eV and a camera thickness of 2 mm, approximately 5.5 x 103 electrons survive
the 1 MeV cut at ground level. Unanswered: What height do protons interact, energy
threshold of camera (depends on kind of particle?)

3 Results

3.1 Energy vs. Signal Strength

We simulated an antenna centered at the core of the shower, for different primary particle (proton)
energies. The results are showed in Figure[5} Also, a plot of time vs. signal strength for some energies
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Figure 2: Hexagonal array of detectors. Each square represents a cellphone (not drawn to scale).
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Figure 3: “area of detector” refers to the area of a single cell phone camera. In the plot legend, “(6)” refers to the
hexagonal grid (Fig. .The energy of the primary particle was 1017 eV.



Momentum vs. Energy loss for particles in Silicon
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Figure 4: Momentum vs. Energy loss for particles in Silicon

is showed in Figure [6]

Energy vs Signal Strength
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Figure 5: The simulation was performed for one event, so it may be not statistically significant

3.2 Scattering plot of some secondary particles

We were keeping track of particles that could possibly be detected with CRAYFIS, such as electrons,
positrons, muons, antimuons, and photons (above certain energy). Plots showing the position of
secondary particles at ground level (primary particle of 10!7 eV) are shown in Figures E |§|



Signal strength for different energies
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Figure 6: The simulation was performed for one event, so it may be not statistically significant

Scattering plot for nuons at ground level
8 T T T T T

Huon +

y-position {kn)

-2 |

-4 |

-5 I I I I I
=6 =4 -2 a 2 4 6

w=position {(kn}

Figure 7:
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3.3 Momentum Spectra of Secondary Particles

We are interested in the energies of the secondary particles, as they will experience energy loss while
traveling through the camera glass. This serves to estimate how many particles will survive after
crossing the glass, and to make some cuts that speed up the simulations.

We show the energy spectra for different secondary particles from a 10'® eV primary proton in

Figures
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Figure 10:

As described above, CORSIKA can collect information about secondary particles at given obser-
vation levels. The following figures show the momentum spectra for electrons and photons observed
at 3400 meters above sea level (MASL), from a 10'6 eV primary particle.
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Momentum of photons at 2nd level of observation (3400 MAMS)
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4 Background (computation done by Jordan)
Suppose that the primary background is muons, with a normalization I' ~ 70 s™1 m™2 str™1, and
angular dependence I'(6) cos?(6), where @ is the zenith angle.

Let’s now consider a horizontal detector, and integrate over the full azimuthal angle. This gives
Ttotal, muons ~ Imin~1 cm™2. Since we know the rate at which muons hit the Earth and the fact that
events are independent of the time interval between them, we use Poisson statistics to describe them.
This is, for a given area A, the total background in certain interval of time ¢ is given by

Pmuons = 1—‘total, muons X Axt (1)

For a squared camera sensor of area A = 0.25cm? and t = 1 s, we get a probability if get hit of
P~ ﬁ. Assuming our phones have a time resolution of 1 second, a cosmic ray should be well above

background.

Including backgrounds, we obtain the following plot

12
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