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Abstract
We outline our code written to simulate the ANITA detection system.
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1 Introduction

The code outlined here is meant to be a simulation of the ANITA and ANITA-lite detection
systems. It should provide the collaboration with a tool to study the impact of various
effects on the experiment’s sensitivity. It will also provide the energy-dependent sensitivity
that will be used for setting limits on models for UHE neutrinos from ANITA-lite data and
ultimately from the full ANITA flights. It also serves as a consistency check with the Monte
Carlo simulation being developed by our collaborators at the University of Hawaii.
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2 Overall Strategy

The simulation models interactions from neutrinos of a specified energy. The Askaryan
pulse is parameterized by the current theoretical model. We require an interaction to occur
within the Antarctic ice volume within the balloon’s horizon. We generate two different types
of events. The first is where the ray seen by the balloon is direct; the ray is emitted from the
interaction upward. The second is where the ray is emitted downward and is reflected from
the ice-rock interface before being reaching the surface. For half of the neutrinos, we force
the ray to be the first type and for the other half, the second type. For a given type of ray,
we find the unique path along which an RF signal would travel from the interaction to the
balloon, snelled through ice layers at the ice-air surface. Next, we pick a direction for the
neutrino path, only considering directions such that the Cerenkov cone is close enough to
the unique ray from interaction to balloon that the signal is still detectable under a best-case
scenario. Depth-dependent attenuation lengths and indices of refraction in the ice are based
on recent South Pole measurements. Surface slopeyness is taken into account under a simple
model. Frequency-dependent antenna response is based on the manufacturer’s specifications.
The trigger configuration is based on the most current design. The restrictions in neutrino
phase space that come about in our selection of neutrino interaction positions and neutrino
directions are corrected for in the final calculation (see Section 7).

2.1 Coordinate System

Where Cartesian coordinates are used, we define x,y and z to be zero at the center of
the earth. The +z axis runs from the center of the earth to the south pole (so, our coordinate
system is defined so that the earth is “upside-down”). The x and y axes lie in the 0◦ latitude
plane, with +x pointing to the 90◦ E longitudinal line, and +y points to 0◦ longitude. This
coordinate system is right-handed.

The φ coordinate is defined as usual, zero along the +x axis, and increasing moving
counter-clockwise from the view looking down on the +z axis. The θ coordinate is measured
relative to the +z axis.

Bedrock and ice surface elevations are measured radially from the center of the earth,
and are quoted relative to sea level. Sea level r(θ) is latitude-dependent and is quoted as a
distance from the center of the earth. We use a geoid shape given by [9]:

r(θ) =
rmin · rmax

√

r2min − (r2min − r2max) cos
2 θ

(1)

where rmin = 6356.752 km and rmax = 6378.137 km.

To accommodate the global crust model 2.0 [2] for thicknesses of sediment layers through
the crust as well as ice thicknesses, which is on a 2◦× 2◦ grid, we bin the earth’s surface into
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Figure 1: Altitude of the upper four layers given in Crust 2.0 along the the 75◦ S latitude
line. The horizontal axis is degrees in longitude.

180 bins in longitude and 90 bins in latitude. Note that the resulting bins are not uniform
in area. The bins in latitude are numbered such that the 0th bin is closest to the +z axis (at
the south pole), and the 89th bin is closest to the north pole (−z).

2.2 CSEDI Crust 2.0

Crust 2.0 is the latest model of the Earth’s interior near the surface published as the
result of an initiative called Cooperative Studies of the Earth’s Deep Interior (CSEDI). It is
based on seismological data, and the model gives thicknesses and densities of each of seven
layers in 2◦ × 2◦ bins: ice, water, soft sediments, hard sediments, upper crust, middle crust,
and lower crust. The ice thicknesses in Crust 2.0 are claimed to be within 250 m of the true
ice thickness. Sediment thicknesses in each cell are to within 1.0 km of the true sediment
thickness and crustal thickness are within 5 km of the true crustal thicknesses.

Figures 1 and 2 show the elevations of the seven crustal layers included in Crust 2.0.

We compute the total Antarctic ice volume by summing the product of ice thickness
and surface area for each bin within the Antarctic continent. For the area of each bin, we
use:

∫ φ2

φ1

∫ θ2

θ1
sin θ dθ dφ = (φ1 − φ2)× (cos θ1 − cos θ2) (2)
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Figure 2: Altitude of the lower three layers given in Crust 2.0 along the the 75◦ S latitude
line.

Where the limits of the integrals define the edges of the bin in latitude and longitude. We
find 2.7 × 1016 m2 of Antarctic ice in this model. Compare this to the 3.01098 × 1016 m3

volume of ice in Antarctica reported by the US Geological Survey [11]; they are different by
10%. Unfortunately, Crust 2.0 calls any ice that sits above water (ice shelves) just water.
Therefore, the Ross Ice Shelf needs to be added into the model by hand. Ice shelves make
up 2.4% of the ice volume in Antarctica, so it won’t account for the entire 10% difference.

3 The Askaryan Signal

3.1 Magnitude of the Pulse

We use the parameterization outlined in [6] for the peak of the Askaryan signal:

E (@1m)

V/m/MHz
= 2.53× 10−7 · sin θv

sin θc
· Eem

TeV
· ν

ν0
· 1

1.+
(

ν
ν0

)1.44 (3)

where ν is the frequency, ν0 = 1.15 GHz, Eem is the shower energy, θv is the viewing angle
and θc is the Cerenkov angle.

5



3.2 Electromagnetic and Hadronic Components of the Shower

We assume flavor democracy; that by the time the neutrinos get here, the flavors are fully
mixed. We also keep track of each flavor individually so the sensitivity to each flavor may
be quoted separately.

We pick an inelasticity y according to [7], which we have approximated by a double-
exponential. If we call the electromagnetic component fe and the hadronic component fh,
then the dependence of fe and fh on y depends on the whether it is a charged current
interaction that occurred or a neutral current interaction. We choose 70.64% of the events
at random to be charged-current and the remainder to be neutral current. If the incident
neutrino was a νe and it is a charged current event, then fe = 1 − y and fh = y. If the
incident neutrino was ντ or νµ, or if the νe interacts through a neutral current, then the
electromagnetic component is for now treated as negligible, and fh = y. A future version of
the code will include µ/τ bremsstrahlung and photo-nuclear interactions.

3.3 Width of Cerenkov Cone

The user can select one of two different parameterizations of the width of the Cerenkov cone
in inputs.txt. Here we refer to the two parameterizations as the “old” parameterization
and “new” parameterization, for lack of a better terminology. The user should select 0 (1)
for the old (new) parameterizations in the appropriate line in the inputs.txt file. In both
parameterizations, the width of the Cerenkov cone is different for the electromagnetic and
hadronic components of the shower.

3.3.1 Old Parameterization

For this parameterization, we model the cone widths as described in [12] for electromagnetic
showers and and in [13] for hadronic showers.

The width of the electromagnetic component in degrees is characterized by:

∆θem(ν) = 2.7 · ν0
ν

·
(

ELPM

0.14Eν + ELPM

)0.3

(4)

where ELPM is energy above which the LPM effect becomes important. The LPM effect
causes the bremsstrahlung interaction to become suppressed because the momentum transfer
(∝ k/E2) becomes so small that the Heisenberg uncertainty causes the interaction to occur
over many scattering centers, resulting in destructive interference. This effect reduces the
width of the Cerenkov cone, but not the magnitude of the electric field at the Cerenkov
angle. For ELPM , we use [4]:

ELPM = 2× 1015
χmedium

χice
(5)
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where χice = 39.5 cm is the radiation length of ice and χmedium is the radiation length of the
medium of interest.

The radio pulse from the hadronic component of the shower is parameterized as in [13],
defining ǫ = log10Eν/1TeV:

∆θhad =
ν0
ν
· (2.07− 0.33 · ǫ+ 0.075 · ǫ2) ǫ ≥ 0 and ǫ < 2 (6)

∆θhad =
ν0
ν
· (1.744− 0.0121 · ǫ) 2 ≤ ǫ < 5 (7)

∆θhad =
ν0
ν
· (4.23− 0.785 · ǫ+ 0.055 · ǫ2) 5 ≤ ǫ < 7 (8)

∆θhad =
ν0
ν
· (4.23− 0.785 · 7.0 + 0.055 · 7.02)
· [1.0 + (ǫ− 7.0) · 0.075] ǫ ≥ 7 (9)

According to [6], the angular distribution of the radio pulse is expected to exhibit a diffraction
pattern centered at the Cerenkov angle. However, for now we approximate the shape of
the electromagnetic or hadronic pulse with a double Gaussian distribution with standard
deviations given by ∆θem and ∆θhad.

In this “old” parameterization, the signal strength at viewing angle θ away from the
Cerenkov angle θC is given as in [12] and [13]:

E(θ) =
sin θ

sin θC
·E(θC) · exp



− ln 2

(

θ − θC
∆θem,had

)2


 (10)

3.3.2 New Parameterization

For this parameterization, we model the cone widths guided by [14].

Electromagnetic showers in ice are modelled just as described in the previous section,
but here we allow for the possibility of scaling width for other media, in case one would
like to use this same code for a detector in salt, for example. We use Equation 4 for the
cone width for the electromagnetic component of the shower and then scale for other media,
inspired by Equation 9 in [14], according to:

∆θem,medium = ∆θem,ice ·
ρmedium

ρice
· K∆,medium

K∆,ice
· n

2
medium − 1

n2
ice − 1

(11)

Hadronic showers are modelled as laid out in Equation 9 in [14]:

∆θhad,medium =
c

ν
· ρmedium

ρice
· K∆,medium

K∆,ice
· n

2
medium − 1

n2
ice − 1

(12)
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In this “new” parameterization, the signal strength at viewing angle θ away from the
Cerenkov angle θC is given as in [14]:

E(θ) =
sin θ

sin θC
· E(θC) · exp



−
(

θ − θC
∆θem,had

)2


 (13)

3.4 Additional factor of root 2/2

4 Event Geometry

4.1 Picking Interaction Point and Direction

We force the neutrino interaction to occur within the balloon’s horizon, given the balloon
position for that event. Within that horizon, we stack the ice thicknesses of all of the bins
in longitude and latitude. The height of each bin in the stack is the difference between
the ice surface and soft sediment elevations for that bin, which is the ice thickness. We
pick a random point along the height of the stack to determine which bin the interaction
occurs in, and at what elevation within that bin. The exact position of the interaction in
the longitudinal and latitudinal directions is chosen at random within the bin. The position

of the interaction is denoted here as ~xint. (wufan.From ~(x)(int) we get the mirror position
of the interaction below the local bottom of the ice where we assume the local bottom of the
ice is an approximately flat mirror.)

The event is then given a weight dposi that is the volume of ice within the horizon divided
by the total volume of ice in Antarctica. The volume of ice for each balloon position (in 100
discrete bins) is calculated once at the beginning of the code so that it does not need to be
calculated for each event.

The event is rejected if the interaction-to-balloon ray traverses rock. Since this is
essentially the same as requiring that the balloon be within the horizon, it would never
reject an event if it weren’t for surface tilt and the fact that we generate events to just
beyond the horizon to be safe.

We pick a neutrino direction at random in cos θ and φ. It is denoted here as ~nν . The
neutrino momentum (non-normalized) is denoted ~pν and its magnitude simply pν . If we
choose θ and φ among all possibilities, the interaction-to-balloon ray may be far enough off
of the Cerenkov cone that the signal is undetectable, even if all other conditions are ideal.
Therefore, we only generate neutrino directions such that |θν,ice− θc| < θth where θν,ice is the
angle between the neutrino direction(~nν) and (wufan the ray out from the interaction point
in the ice(~nray). For direct rays ~nray is the direction of interaction-to-balloon ray,but for
reflected rays it is the mirror vector of the mirror interaction point-to-balloon, which means
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here ~nray is downward). ) The Cerenkov angle θc = Cos−1(1/n), see Section 5.2 for how the
index of refraction is chosen. The angle θth is the maximum angle that the ray may diverge
from the center of the Cerenkov cone for the interaction to still be detectable, given the
parameters of the event.

To find θth, first we find the maximum electric field (in V/m/MHz) at 1 m that is
possible to be emitted from the interaction within the antenna bandwidth using Equation 3.
For E (@1m) = E (@1m)

max, we take ν = νmax = 1200 MHz. Here, we use sin θv = 1 since it is
the most conservative value and it allows us to solve for ∆θth = θv−θc. Then, we account for
the distance between the interaction and payload r by dividing that distance into E (@1m)

max

to get the maximum electric field possibly seen at the payload, Emax. From Emax, we derive
θth.

When the shower is dominated by either electromagnetic or hadronic energy deposition,
the angular threshold (the angle beyond which the signal could not possibly be detectable)
is found by solving for ∆θth in the equation:

V max
noise ·Nσ = fem · E (@1m)

max(sin θv = 1) · hmax
eff ·B

·exp
(

−1
2
· ∆θ2

th

∆θ(max)2
em

)

fem ≫ fhad (14)

= fhad · E (@1m)
max(sin θv = 1) · hmax

eff · B

·exp
(

− ln 2 · ∆θ2
th

∆θ(max)2
had

)

fhad ≫ fem (15)

Here, fem,had is the EM or hadronic fraction, if only one of them is non-negligible (other-
wise, see the next paragraph). The maximum effective height hmax

eff of the antennas over
the antenna bandwidth is 63 cm (from the antenna specs). The width of one bandwidth
slice within the larger antenna bandwidth is denoted B. The variables ∆θ(max)em,had are the
maximum widths of the Cerenkov cone due to the electromagnetic and hadronic showers over
the bandwidth available to the antennas. Section 3.3 describes how these widths are deter-
mined. The largest widths are at the lowest frequency, 200 MHz; we find θ(max)had = 3.7◦

and θ(max)em = 1.1◦ for deep ice, higher within the firn (see Section 3.3). V max
noise is the

maximum expected noise level in a single bandwidth slice among the 4 layers of antennas,
given their cant angles (see Section 6.1). Nσ = 2.3 defines the voltage threshold. Explicitly,
θth is (when electromagnetic or hadronic energy deposition dominates):

∆θth =

√

−2 ·∆θ(max)2em,had · ln
Vmax

noise · Nσ

fem,had · E (@1m)
max(sin θv = 1) · hmax

eff · B (16)

When the electromagnetic and hadronic components of the shower are both non-
negligible, then we find the angular threshold by stepping by increments of 0.5 ∆(max)θem
(we could have chosen to step in either ∆(max)θem or ∆(max)θhad) away from the center of
the Cerenkov cone. When the ray is ∆θ from the center of the Cerenkov cone, the maximum
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voltage observed at the antenna is derived as in Equation 14, but adding the electromag-
netic and hadronic components (this time we use θv = θc + ∆θ since we are not inverting
the equation in this case):

Vrx =

[

fem · exp
(

−1

2
· ∆θ2

∆θ(max)2em

)

+ fhad · exp
(

− ln 2 · ∆θ2

∆θ(max)2had

)]

·E (@1m)
max(θv = θc +∆θ) · hmax

eff ·B (17)

Here, Vrx is the maximum voltage seen at the antenna for a given θ, and all of the variables
in Equation 17 are found as described for the previous case above. The angular threshold
θth is the angle at which Vrx falls below V max

noise ×Nσ.

4.2 Finding Earth/Ice Entrance Points for the Neutrino

Finding the entrance point for the neutrino ~rin, given ~pν and ~xint is a simple geometry
problem. Define:

a ≡ p× cos θ +
√

R2
e − p2 · sin2 θ (18)

where θ is the angle between ~pν and ~xint. Then, the entrance point for the neutrino is:

~rin = ~xint − a× ~nν . (19)

The quantity inside the square root is negative for events where the interaction occurred
above sea level and the neutrino is down-going. These events are treated separately and
the entrance point is found iteratively. First, the elevation h

(0)
int is found at the latitude and

longitude where the interaction occurred, and then Re in the above equation is replaced with
Re + h

(0)
int and a first guess at an entrance point is found. Then the elevation at that latitude

and longitude, h
(1)
int, is found and Re is replaced with Re + h

(1)
int. After four iterations, all

but a few percent of the events have converged with a difference between entrance points by
successive iterations being less than the interaction length for that energy.

4.3 Balloon and Antenna Positions and Orientations

The balloon sits at an altitude of 37 km at 80◦ S latitude. The position of the balloon
in longitude is selected at random for each neutrino generated.

The payload design of interest may be selected in the input file. For each design, the
antennas are given the correct orientation in φ and inclination in θ at the right radius from
the payload axis, spaced appropriately along the vertical axis. The input file also asks for
the number of layers to be included. If the SMEX payload design has been chosen, and the
user sets the number of layers to be 3, then only the top 3 layers of antennas out of the 4
layers in that design are included in the simulation. This is so that the nadirs can easily be
turned on and off.
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5 Ice

5.1 Attenuation in the Ice

The user may set the attenuation length for radio in ice to be a constant value (currently
700 m, on the conservative side), or a depth-dependent attenuation length based on (wu-
fan.measurements performed at Ross Ice Shelf and the South Pole. [3] ) The latter is the
default. Fenfang Wu, working with David Goldstein, incorporated this feature into the code.

(wufan. i. For Ice Shelf, we just treat Ronne Iceshelf the same way as Ross Ice Shelf
and we find the average attenuation length for upward direct rays:

〈L〉 =
∫ 0
−deff

int

1250 ∗ 0.38 ∗ 0.08886 ∗ exp(−0.048827 ∗ (225.67460− 86.517596 ∗ log10(x + 848.870)))dx

deffint
(20)

For reflected rays which are first downward and then upward, the average attenuation
length:

〈L〉 =
∫−deffmax

−deff
int

1250 ∗ 0.38 ∗ 0.08886 ∗ exp(−0.048827 ∗ (225.67460− 86.517596 ∗ log(x + 848.870)))dx+
∫ 0
−defmax

2 ∗ deffmax − defint
(21)

where the interaction performed from the height of the interaction relative to the surface
x = −deffint (a negative number) to the surface (x = 0). Since the measurements were only
carried out to a depth of 420 m at Ross Ice Shelf, an effective maximum depth and effective
interaction depth are utilized given by:

deffint = dint (dmax < 420m) (22)

deffmax = dmax (dmax < 420m) (23)

deffint = dint ×
420m

dmax

(dmax > 420m) (24)

deffmax = 420 (dmax > 420m)(wufan) (25)

ii. For other places on Antarctica,
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For direct rays which is always upward, the average attenuation length:

〈L〉 =
∫ 0
−deff

int

1250 ∗ 0.08886 ∗ exp(−0.048827 ∗ (exp(1214.15−x
1004.40

)− 55.5889))dx

deffint

(26)

For reflected rays which are first downward and then upward, the average attenuation
length:

〈L〉 =
∫−deffmax

−deff
int

1250 ∗ 0.08886 ∗ exp(−0.048827 ∗ (exp(1214.15−x
1004.40

)− 55.5889))dx+
∫ 0
−deffmax

1250 ∗ 0.08886 ∗ exp(
2 ∗ deffmax − deffint

(27)

Here the measurements were only carried out to a depth of 2810 m, so:

deffint = dint (dmax < 2810m) (28)

deffmax = dmax (dmax < 2810m) (29)

deffint = dint ×
2810m

dmax

(dmax > 2810m) (30)

deffmax = 2810(dmax > 2810m) (31)

In the above formulas, dmax is the real maximum depth of the ice at the longitude and
latitude position where the interaction occurred. dint is depth of the interaction (a positive
number). wufan) Then, this attenuation is imposed on the signal:

E → E · e−D/〈L〉. (32)

where E is the electric field of the signal and D is the distance that the RF signal travels
through the ice. D is the magnitude of the difference between ~xint and the point where the
RF signal exits the ice, the latter found by the method described in Section 5.3. (wufan.For
reflect rays, we use 10 percent of power reflection rate, so:

E → 0.316227766E · e−D/〈L〉. (33)

)

5.2 Index of Refraction

The index of refraction of deep ice nice is taken as 1.79, and at the surface the index of
fraction nsurf is 1.325. At depths shallower than 150 m is the firn, which is layers of packed
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Figure 3: Fit to RICE data for index of refraction as a function of depth below the surface.
Plot is from Peter Gorham.

snow. We use the following equation for the index of fraction nfirn as a function of altitude
(hint, a negative number, here in m) in the firn [1].

n(hint) = 1.325 + 0.463251× e−0.140157×hint (34)

This equation is a fit to the data measured by members of the RICE Collaboration. See
figure 3.

5.3 Ray Tracing

We need to determine the path of the ray that emerges from the interaction point and
arrives at the balloon’s position (the distances between antennas on the payload are small
enough to ignore compared to the distance between any interaction point and the balloon).
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Our first guess for the RF exit point is the point on the ice surface that is directly
radially outward from the interaction point. We call the vector from the earth’s center (the
origin of the coordinate system) to the RF exit point ~rexit,0 and we call the normalized vector
from the interaction point to the RF exit point ~nrefr,0. The surface normal at this exit point
would also point radially away from the center of the earth were it not for the “tilt” at the
surface. We take this into account by rotating the radial vector in the φ and θ directions to
get the surface normal ~nsurf,0. The magnitude of the rotation in each direction is the inverse
tangent of the slope along that dimension determined from the difference in the altitudes of
its two neighboring bins in latitude and longitude.

Once ~nsurf,0 is found, its direction is randomized to account for surface “slopeyness.”
To each component of ~nsurf,0 we add a number picked from a Gaussian distribution of width
0.012. Then, ~nsurf,0 is normalized again.

Then, ~ne−b,0 is the vector running from the first guess RF exit point to the balloon’s
position.

Using ~ne−b,0, we arrive at our second guess for the direction of the ray in the ice ~nrefr,1

using Snell’s law, in its unfamiliar and not-so-appealing form

~nrefr,1 = −







nair

nsurface
cos θi −

√

√

√

√1−
(

nair

nsurface
sin θi

)2




~nsurf,0 +
nair

nsurface
~ne−b,0 (35)

to get the refracted ray at the surface (the top of the firn). Then, we use Snell’s law again,
replacing nair with nsurface and nsurface with ndepth to get the refracted ray at the depth
where the interaction occurred. This ray is called ~nrefr,1. The value ndepth is found by the
method described in Section 5.2.

Using this new direction for the RF in ice, we find a new exit position ~rexit,1 and a new
exit-to-balloon direction, ~ne−b,1. (wufan.Here for reflect rays, we use the mirror interaction
point to get the new exit position and a new exit-to-balloon directio because the exit rays
looks like coming from the mirror interaction point.) Instead of finding a new ~nsurf,1, however,
we still use ~nsurf,0 due to the slopeyness that was imposed. Finally, we do one last iteration
and use Equation 35 twice again, changing subscripts on the RHS from 0 → 1, to find ~nrefr,2,
and from that deduce ~rexit,2, ~nsurf,2, ~ne−b,2.

Figures 4 and 5 shows the difference between the exit points from successive iterations,
showing that the method does converge.

5.4 Slopeyness

We take the surface normal at the longitude and latitude where the interaction occurs and
randomize each component, allowing it to change by as much as 1.2%. This gives 0.01 rad
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Figure 4: Difference in meters between RF exit points along the ice-air boundary from the
first and second ray-tracing iterations.
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Figure 5: Difference in meters between RF exit points along the ice-air boundary from the
second and third ray-tracing iterations.
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as the mean magnitude of the slope.

5.5 Fresnel Factor

When the rays from the Cerenkov cone reach the ice-air boundary they just obey boundary
conditions and thus the magnitude of the electric field is altered and the signal traverses the
boundary [15]. This Fresnel factor, as it is called, for the “pokey” case is:

f‖,⊥ =

√

tan θI
tan θT

(1− r2‖,⊥) (36)

where r‖ is:

r‖ =
tan(θI − θT )

tan(θI + θT )
. (37)

and r⊥ is the Fresnel coefficient for the “slappy” case:

r⊥ =
sin(θI − θT )

sin(θI + θT )
. (38)

For the pokey case, the polarization vector is perpendicular to the plane of incidence, and
for the slappy case the polarization vector is in the plane of incidence. The general case is
composed of both components.

After dividing up the electric field emerging from the ice into its “pokey” and “slappy”
components, Eice

‖ and Eice
⊥ , the electric field that emerges from the ice Eair is

Eair =

√

(

Eice
‖ · r‖

)2
+ (Eice

⊥ · r⊥)2 (39)

We are in the process of verifying that the magnification (separate from the Fresnel coeffi-
cient) is also treated properly in our simulation.

6 Antenna Response

6.1 Noise

An antenna that sees only the sky will see noise due to the temperature of the sky (we take
Tsky = 15 K) and the temperature of the front-end electronics (Tsyst = 200 K). An antenna
that points downward will see less sky and more ice (Tice = 240 K). For a given antenna
declination, we find the effective temperature by performing a weighted average of the power
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seen by the antenna at each declination angle, taking into account the antenna beam widths.
The effective temperature Teff for a cant angle θant is:

Teff =

∫ θhoriz−θant

−π (Tsky + Tsyst)·e−2·ln 2·(θ/θ0)2dθ +
∫+π
θhoriz−θant

(Tice + Tsyst)·e−2·ln 2·(θ/θ0)2dθ
∫+π
−π e−2·ln 2·(θ/θ0)2dθ

(40)
where θhoriz is the declination at which the balloon at altitude 37 km sees the horizon 700 km

away. Taking into account the earth’s curvature, we find θhoriz =
√

(2 ∗ hb/gb) = 0.11rad ≈
6.2◦ where hb = 37.0 km is the altitude of the balloon and gb is the radius of the geoid at
the balloon’s latitude. At 80◦S, gb = 6357.7 km.

Based on this calculation, an antenna canted by 10◦ sees an effective temperature of
338.8 K and an antenna canted by 55◦ an effective temperature of 428.3 K.

6.2 Trigger

We divide up the total bandwidth of the system (200 MHz to 1200 MHz) into four sub-bands
whose central values are: 265, 435, 650 and 980 MHz and whose widths are: 130, 160, 250
and 370 MHz. A trigger channel is one polarization (left- or right- circularly polarized) of
one antenna for in one sub-band in frequency.

The trigger in this simulation is the one described in Gary Varner’s note [10]. The top
two layers of eight antennas on the payload are combined into one layer of 16 antennas for
the purpose of triggering. So, the trigger sees three layers of antennas: two layers of 16
antenns, and the third layer is the eight nadir antennas. At Level 1, an antenna passes the
trigger if three out of 8 channels (2 polarizations, 4 bandwidth slices) surpass the threshold,
which is Nsigma = 2.3 times the expected noise voltage for that channel. At Level 2, trigger
channels are considered in groups of contiguous antennas, and the trigger is fired if enough
antennas in that group pass the Level 1 trigger. For the top two trigger layers, there are 5
antennas in a group and at least 2 must pass. For the nadir antennas, the requirement is 2
out of 3. There is a separate trigger that considers nadir antennas only, and that requirement
is 3 out of 3 contiguous nadir antennas is a group. At Level 3, either two different layers
are required to have passed at Level 2, or the nadir-only Level 2 trigger must have fired.
The noise voltage Vnoise is chosen at random from a Gaussian distribution with a standard
deviation equal to the expected noise for that channel’s bandwidth and RF temperature.

The antenna parameters are inferred from the manufacturer’s specifications for the
antennas used in the Anita-lite flight. The manufacturer is Seavey Engineering Associates,
Inc. and antenna used is the 0.3-1.5 GHz Dual Linear Polarized Quad Ridge Antenna Model
0312-810. The specs give the antenna gain for 5 values of frequency from 300 MHz to 1200
MHz and the beam width for the E-plane and H-plane, and for the vertical and horizontal
polarization of each. We interpolate between these points to find the gains the beam widths
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at the frequencies between those values given. For the region below 200 MHz, we use the
values given in the specs for 300 MHz. Gains are all between around 8 and 12 dBi and are
denoted G. The beam widths vary from around 35◦ to 65◦ are are denoted bhE(ν), b

v
E(ν),

bhH(ν) and bvH(ν), where the subscripts and superscripts denote the horizontal and vertical
polarizations in the E-plane and H-plane. At a given frequency ν, the effective height of the
antenna is related to the gain by:

heff(ν) = 2×
√

G · c2
4π · ν2

· Zrx

Zair

(41)

where Zair = 377 Ω is the impedance of free space and Zrx = 50 Ω is the impedance of the
antenna.

For a signal F (ν) incident on the ith antenna at an angle θH off of the H-plane and an
angle θE off of the E-plane, the 0th polarization (j = 0) and 1st polarization (j = 1) signal
in the kth sub-band from the antenna is:

Vijk =
pmax(k)
∑

p=pmin(k)

1√
2
· F (νp) · 0.5 · heff(νp) ·∆ν · cj · exp(− ln 2 ·





(

θE

bj
E(νp)

)2

+

(

θH

bj
H(νp)

)2


)

(42)
Frequency bins run across all four sub-bands between ν1 = 200 MHz and ν2 = 1200 MHz,
so that ∆ν = 10 MHz, but the kth sum is over frequency bins within the kth sub-band, pmin

to pmax. We take c0 = cE and c1 = cH , where cE (cH) is the component of the incident
ray parallel to the E-plane (H-plane) and perpendicular to the normal plane. If cN is the
component parallel to the normal plane and perpendicular to both cE and cH , then the
vector (cE, cH , cN) is a unit vector. The magnitudes of the left and right circularly polarized
signals are each:

Vi(L,R)k =
√

V 2
i0k + V 2

i1k. (43)

7 Volume × Steradians

The water-equivalent [V∆Ω] is computed using the following formula:

[V∆Ω] = V × ρice
ρH2O

× 4π × Σwi

N
× σSM

σ
(44)

The variables are:

• V is the entire volume of Antarctic ice, computed by summing over all bins the product
of the ice thickness and the cross-sectional area of the bin.
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Figure 6: Effective Volume times steradians from this simulation. We also show the predicted
GZK flux with a reasonable set of parameters from [5].

• ρice and ρH2O are the densities of ice and water, respectively.

• N is the number of neutrinos that the user asks to be generated.

• wi is the weight given to each event, described in Section ??.

• σSM is the Standard Model νN cross section

• σ is the νN cross section used for this run

Figure 6 shows the volume × steradians attained from this simulation.

7.1 Weighting the Events

In addition to accounting for phase space reduction described previously, we weight each
event according to the probability that it interacted in the earth before it reached the ice.

19



As a neutrino moves through the earth, it encounters varying densities as it passes
through layers of the earth’s interior, and thus differing interaction lengths.

The probability that a neutrino interacts in the rock is:

w =
n
∏

i=0

e−xi/Li =
n
∏

i=0

e−xiρi/ℓ = e
1

ℓ

∑n

i=0
xiρi (45)

where n is the number of layers the neutrino traverses. A “layer” can be the crust, the
mantle, or one seven layers defined in Crust 2.0.

Then xi is the distance the neutrino travels through the ith layer in meters, ρi is the
density of the ith layer, Li is the interaction length of that layer in meters, and ℓ is the
interaction length in kg/m2.

To find the column density of the chord in kg/m2 (the sum
∑n

i=0 xi · ρi) traversed by
the neutrino, we have two different options in the code, but describe the default method
here.

The total chord length in kg/m2 is calculated as follows. We first step in 50 m steps
along the neutrino’s path as it enters the earth through the crust, summing over xiρi where
xi is the length of the ith step and ρi is the density the layer that contains that step. We
continue stepping until we are too deep to be in the earth’s crust based on Crust 2.0. At
each point, the depth along the neutrino’s path is calculated relative to the height of sea
level according to the geoid model. Next, the distance that the neutrino travels through the
mantle is found through a simple geometrical calculation. The density of mantle is taken to
be 3400 kg/m2. The product of the path in the mantle and the mantle density is added to
the sum. Then, we step through the remaining neutrino path to the interaction position,
finishing the summation.

7.2 Phase Space Factor

The phase space factor di for the ith event is the product of the phase space factor that
comes about when we select the neutrino interaction position (dposi ) and the one that comes
about when we select the neutrino direction (ddiri ). Therefore, di = dposi × ddiri .

The position of the neutrino interaction is forced to be in the volume of ice that is within
the horizon of the balloon. The balloon’s longitudinal position along the 80◦ S latitude line
is chosen at random for each event. The phase space factor dposi is then just the total volume
of ice in Antarctica divided by the volume of ice within the horizon for the ith event. The
volume of ice within the horizon is calculated once at the start of the program for 100 equally
spaced balloon positions along its circular path. For each event, we take the pre-calculated
volume for the balloon position that is closest to the balloon position for that event.
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The neutrino direction is chosen such that the its Cherenkov cone lies close enough
in solid angle to the interaction-to-balloon line of sight that it is possible that the event is
observable under the most optimistic of circumstances, as described in Section 4.1. Since
the direction for the ith neutrino is chosen from the intersection of a cone of width 2 sin θthi
and a unit sphere, the corresponding phase space factor is:

ddiri =
4π

sin θc · 2 sin θthi · 2π
(46)

8 Cross Section Enhancements

8.1 Error on the Effective Volume × Steradian

Since [V∆Ω] is derived from a sum of weights, the statistical error is non-trivial. Imagine we
histogram all of the weights that are summed into M equally spaced bins between 0 and 1.
Then, the total number of events that pass our Monte-Carlo simulation (which only differs
from [V∆Ω] by a constant) is given by:

M
∑

i=0

fi · wi (47)

where fi is the number of events fall in the ith bin centered on weight wi. We define ǫ to be
the error on fi. When fi < 20, we use the appropriate Poisson errors from [8], keeping track
of asymmetric errors. When fi > 20, ǫ =

√
fi. Then, the total error on the sum of weights

is:
√

√

√

√

M
∑

i=0

(ǫi · wi)2 (48)

9 Coding

9.1 Random Number Generation

The gRandom variable is a global variable set up by Root that points to a random number
generator instance of the type TRandom3. At the beginning of the program, we set gRandom
to an instance of TRandom3 with a seed that we set to a constant. One can change the value
of that seed to a different constant through an option in the input file. You may want to
use this option if, for example, you want to simultaneously run multiple jobs with different
seeds and be able to combine the results for increased statistics.
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For the sake of repeatability, we set the random number seed to a constant instead of,
for example, setting it to the current time as is often done. We would like to be able to get
identical outputs for equivalent code with the same inputs.

10 Future Improvements

The authors are aware that there are many effects that still need to be included and im-
provements that need to be made for this simulation. These include:

• Surface roughness needs to be treated properly.

• Double-bang taus need to be included.
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