

Misconceptions in UHE- ν Radio Experiments

1 Center of Mass Energy \neq Neutrino Energy

The energy of a neutrino (E_ν) is its intrinsic energy ($E_\nu = \sqrt{(p_\nu c)^2 + (m_\nu c^2)^2}$). The center-of-mass (COM) energy, which is useful in accelerators, has to do with the amount of energy involved in the collision, including not only the neutrino, but also the target; usually a nucleon.

Suppose a neutrino of energy $E_\nu = 10^9$ TeV interacting with a proton at rest, then the center of mass energy (\sqrt{s}) can be approximated to be

$$\begin{aligned}\sqrt{s} &\approx \sqrt{2E_\nu m_p} \\ &\approx 45 \text{ TeV},\end{aligned}$$

where m_p is the mass of the proton.

As a reference, the COM that the LHC can attain is 14 TeV, approximately 3 times smaller than what we just calculated for a neutrino. This can allow probes of the Standard Model at higher energies than what a human made accelerator can get.

2 ?