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Abstract
Here I write down carefully the dimensions and units of all components of a discrete
Fourier Transform and Parseval’s Theorem.

1 Sources and Other Reading

I will take as my primary source for information on the discrete Fourier Transform to be
Numerical Recipes: The Art of Computing, 3rd Edition by Press et al. All equations I cite
come from Chapters 12-13 unless stated otherwise. I will often cite them as NR-12.0.1,
which should be read “Numerical Recipes, Equation 12.0.1”.

As a preface, I will refresh some terminology. When we make a measurement of a physical
observable, that observable has both a dimension, and a units system to quantify measure-
ments in that dimension. The dimension is a measure of a physical variable. For example,
the physical observable “how far do I have to walk to get across the room” could be measured
by examining the dimension known as length. If I want to quantify that measurement, I
must pick a system of units, like feet. So the distance across the room has dimension length,
and can be measure in units of feet, or meters, or furlongs, etc.

2 The Continuous Fourier Transform

2.1 The Continuous Fourier Pair

Generally, the continuous Fourier transform relates the continuous time domain representa-
tion of a function h(t) to its continuous frequency domain representation H(f). For us, h(t)
is almost always a waveform from a detector; h(t) has dimension of voltage, and typically
units of Volts (V). Time (¢) is usually measured in seconds (s). Linear frequency (f) has
dimensions of cycles per time, and typically has units of cycles per second, or Hertz (Hz =
1/s). To denote the units of a quantity, I will use square brackets [...].

To summarize, [h(t)] =V, [t] =s, [f] = 1/s = Hz.

Now, h(t) is related to H(f) by the following mathematical relationships, known as a Fourier
Pair. Tt is given in NR-12.0.1 by:
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Now, the units. Observe that the complex exponentials (e*27/*) are dimensionless. This
is because [f] - [t] = Hz-s = 1.s = 1. The dimension of df is inverse time, so [df] = 1/s.
This means that H(f) has units of h(t) - dt or V-s. In many fields, this is written as V/Hz.
Again, [H(f)] =V -s=V/Hz.

2.2 The Continuous Parseval’s Theorem

The power in a signal is the same in the time or the frequency domain. This leads to the
continuous version of Parseval’s Theorem:

Power = / Ih(t)[2dt = / H(f)2df (3)

The units check out. [h(t)%dt] = V2-s , and [H(f)?df] = V?/Hz? -Hz = V?/Hz = V2 -s.
The quantity h(t)? does not expressly have the units of power (recall from intro physics that
P =V?2/R). In this field, one assumes the voltages are being run through some imaginary

impedance R. Because the power has units of V2 - s, it is often seen on plots as having units
of V2 /Hz.

3 The Discrete Fourier Transform

As scientists, we are never able to observe a voltage source continuously; instead, we are
stuck with discrete samples of a waveform. Analogous to the continuous cases above, there
are discrete versions of the Fourier Pairs, and discrete versions of Parseval’s theorem.

3.1 The Discrete Fourir Pair

Imagine that for a period of time T, you take data every A seconds, and end up with N
samples of data. Let each of these samples have an index k; so k = 1 is the first sample,
k = 2 is the second, and so on. Each sample then has a timestamp, ¢, = kA, and a voltage
measurement, hy = h(t)|¢=+, = h(t;). Because we have discrete data, we can only produce
information about a discrete number of frequency modesﬂ We define the frequency modes
of interest to be f, = §x for n = —N/2...N/2. E|

So, we take the continuous case from above (H(f)) and produce a discrete estimate of

1You might argue that if I want more data points, I could merely interpolate the waveform. But note
that if you interpolate to smaller A, you increase the number of data points N commensurately, as the total
time is a constant; T'= NA.

2 As pointed out in NR section 12.1.1, this choice of frequency range is made to correspond to the upper
and lower bounds of the Nyquist frequency—a logical choice as all power contained in a waveform is aliased
there. But discussing that here would take me too far afield.



the continuous Fourier transform H(f,)

H(f)= /h(t) 62mftdt:>H(fn) — /h(t) o2mifnt gy

We can now estimate the integral with a sum with dt — A, f, = 55 Then as in NR-12.1.6
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where H,, has been defined in the last step as

N
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The discrete time points can be returned by performing the discrete inverse Fourier trans-
form, given by NR-12.1.9:

N
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hi =+ Z%Hne 2mikn/N (5)
The factor of 1/N is needed to normalize the sum. The parallel between equations and
() should remind you of those between equations and 7 save the factor of N. The
Fourier Pair in questions is really hy and H,, not hy and H(f,).

An important note on terminology is now necessary. H,, without multiplication by A,
is termed, perhaps poorly, the Discrete Fourier Transform. To be clear, there are three
phrases floating around at this point. There is the true, continuous Fourier Transform
H(f). There is the discrete estimate of the continuous Fourier Transform, H(f,). And
there is the Discrete Fourier Transform itself, H,, which is the object belonging to the dis-
crete Fourier Pair. The language is subtle, bordering on malicious, so great care must be
taken in navigating the literature. The language problem wouldn’t be so dangerous were
it not for the dimensions/ units problem the vocabulary choice engenders. This will be
particularly clear when we explore the discrete version of Parseval’s Theorem below.

Now, the units. As with the continuous case, note that the exponential is unitless, and
[hi] = V. Therefore, for H(f,), we have [H(f,)] = [hA] = V -s = V/Hz. However, note
that H,, does not have the same units as H(f,)!! Because H(f,) has its time units brought
in by multiplication of the A, we infer that the units of H,, are simply Volts. To be explicit:
[H(fn)] =V -sand [H,] = V. This conclusion bears worth repeatig in words: the units of
the discrete estimate of the continuous Fourier transform (H(f,)) are not the same as those
of the Discrete Fourier Transform itself (H,,). [H(fn)] # [Hx]-

3.2 The Discrete Parseval’s Theorem

Parseval’s theorem is still true: the power in a signal must be the same whether we write it
down in frequency or time space. The discrete version of Perseval’s theorem states:
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Note the units. The dimension of hj is voltage squared, and [h?] = V2. This is also true
for H,; as we established above, [H,] =V so [H2] = V2. So [h2] = [H?] = [V?]. The units
check out, but pay attention to the quantity in the equality. It is not the discrete estimate
of the continuous Fourier Transform H (f,,), but rather the Discrete Fourier Transform itself
H,,. The units would be expressly incorrect if we had used H(f,).

Many resources are not careful about stating the difference between H(f,) and H,, es-
pecially when you move on to computing more complex things like the cross-correlations
and Power Spectral Densities. But the difference is important from a physical standpoint,
and forgetting it will mean the wrong answer, even if the code compiles. Books are also often
not careful about pointing out the factor of 1/N. When in doubt, always check Parseval’s
theorem manually, starting from the one fact that will always be unambiguous: the units of
hi are Volts, and the units of A are seconds. Derive everything else from there.

4 Summary Table

’ Symbol \ Units \ Meaning ‘
h(t) Volts (V) Continuous, time domain representation of a
function.
H(f) Volts - Time or Volts/Hz | Continuous, frequency domain representation of
(V/Hz) a function.

H(fn) Volts - Time or Volts/Hz | Discrete estimate of the continous, frequency do-
(V/Hz) main representation of a function

H, Volts (V) Discrete Fourier Transform
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