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Abstract

The discovery of ultra-high energy (UHE) neutrinos provides a promising tool to

probe the highly energetic hadronic accelerators at the far reaches of our universe

with little deflection or interaction in their travels through the cosmos. However,

detecting these neutrinos is rare and requires expansive detectors and medium, opti-

mized hardware, and extensive analysis. This thesis explores potential applications

for evolutionary algorithms to improve the experimental design and analysis of UHE

neutrino experiments.

The first project describes the use of genetic algorithms for designing antennas

with better sensitivities to ultra-high energy neutrino-induced radio pulses than cur-

rent designs. This thesis describes the history and work of the Genetically Evolving

NEuTrIno TeleScopes (GENETIS) project. First, initial projects and exploratory

GAs are described. Second, a discussion is given on the evolution of increasingly

complex antenna designs optimized to improve the detection of UHE neutrinos. Fi-

nally, a project to optimize antenna response patterns are evolved for a given array

geometry is presented.

The second project described is an investigation using genetic programming to dis-

tinguish signals from instrumental or environmental noise triggers. Using Karoo GP,

a genetic programming software suite, we present a study using genetic programming
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to classify signal and background in ARA data. In addition to variable exploration

and feature extraction, coherently summed waveforms (CSWs) are also analyzed.

Evolutionary algorithms are powerful techniques that are underutilized in astro-

physics. With the potential to improve experimental design and analysis techniques,

these algorithms could help lead the search in UHE neutrino detection and the field

of multi-messenger astronomy.
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Chapter 1: Neutrino Astronomy

1.1 Introduction

Over the last few decades, scientists have used ultra-high energy (UHE) particles

to explore the most extreme events in the distant universe. These events acceler-

ate hadronic matter to relativistic speeds and lead to the production of three main

UHE particles that can be detected on Earth: (1) cosmic rays (CRs), (2) gamma

rays, and (3) neutrinos. Each of these has both advantages and disadvantages for

probing the distant corners of the universe. As charge-carrying particles, cosmic rays

are bent by galactic magnetic fields making it di�cult to retrace their origins. UHE

cosmic rays have been detected, but no sources have been found. Further, at energies

above ⇠1019.5 eV, cosmic rays are attenuated by the GZK process [3]. Gamma rays

are uncharged and can carry information apropos their origin; however, gamma rays

attenuate above approximately 100 TeV and the gamma-ray signal leaves an ambi-

guity between signal creation from leptonic processes and hadronic processes that

has yet to be solved [29]. Only gamma-ray signals produced from hadronic processes

originate from these extra-galactic phenomena of interest that would produce UHE

cosmic rays. Furthermore, high energy gamma rays above 1014 eV are absorbed by

cosmic radiation [40], [73]. This leaves the highest energy gamma rays emitted from
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sources hidden from telescopes. The third particle, neutrinos, do not carry an electric

charge, and are only subject to the weak interaction and the force of gravity. This

makes them distance-resilient communicators since their direction is not influenced

by galactic magnetic fields and they rarely will interact with matter. Unlike cosmic

rays and gamma rays, neutrinos that reach earth will point directly back at their

source.

Neutrinos are exceptional extra-galactic messengers. Likely born from violent

events such as blazars, active galactic nuclei (AGN), gamma ray bursts (GRBs), and

starburst galaxies, UHE neutrinos are expected to be present in the universe and, as

elementary particles, play a significant role in understanding the fundamental ques-

tions of astrophysics. With neutrino astronomy, we can expand our understanding

of the most powerful particle sources in the universe, which are currently not well

understood. UHE neutrino astronomy (at and above 1017 eV) seeks to provide new

information in the highest energy regimes where other particles are inadequate.

1.2 Production of UHE Neutrinos

There are two main predictions for the creation of UHE neutrinos. First, extra-

galactic sources act as nature’s most powerful particle accelerators to generate UHE

neutrinos. Called astrophysical neutrinos, these come directly from point sources.

Second, the GZK process creates cosmogenic neutrinos through indirect production.

An illustration of the neutrino flux from various sources is given in Fig. 1.1. Due

to the GZK process, UHE cosmic rays can only travel within tens of Mpc before

interacting with CMB and producing UHE cosmogenic neutrinos [40].
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Figure 1.1: Measured and expected fluxes of neutrinos from di↵erent sources. Energies
above approximately 10 GeV are addressed by Cherenkov and Askaryan detectors
underwater and in ice. The highest energies are only accessible with detectors one to
three orders of magnitude larger than IceCube [105].

1.2.1 Astrophysical Neutrinos

Many theories that exist regarding the origin of astrophysical neutrino flux at and

above the PeV scale are based on extra-galactic sources; these extra-galactic sources

are capable of accelerating hadrons (likely protons or possibly heavier nuclei such as

iron) to speeds much higher than man-made accelerators on earth [16]. These UHE

hadrons interact with gas near the source or with ambient radiation, producing kaons

and charged pions which subsequently decay into neutrinos and anti-neutrinos [38].

An example process can be seen below:
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puhe + �bg ! n+ ⇡
+

n ! p+ e
+ + ⌫e

⇡
+ ! µ

+ + ⌫µ

µ
+ ! e

+ + ⌫̄µ + ⌫e

(1.1)

Figure 1.2: Cosmic ray spectrum from a variety of experiments. As evidence for
the GZK limit there is a sharp cut o↵ above 1010GeV. Figure from [110], adapted
from [54].

1.2.2 Cosmogenic/GZK Neutrinos

Above 1017 eV, ultra-high energy cosmic rays (UHECR) are theorized to interact

with the CMB through the � resonance in a process first theorized by Greisen, Zat-

sepin, and Kuzmin [59, 114]; the decay of the charged pions results in UHE neutrinos
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called cosmogenic or BZ neutrinos (after Berezinksy and Zatsepin) [28]. The GZK

process promises that as long as UHECRs above the threshold energy of 5⇥ 1019 eV

exist, there will be the production of UHE neutrinos. As evidence for the existence

of the GZK process, the UHECR flux displays a drop-o↵ at this energy as shown in

Fig. 1.2. This is called the Greisen-Zatsepin-Kuzman (GZK) process and is funda-

mentally the same as Eq. 1.1. The GZK process is given below.

�CMB + p ! �+ ! p+ ⇡
0

�CMB + p ! �+ ! n+ ⇡
+

(1.2)

1.3 Challenges of Detecting UHE Neutrinos

Though the interest in multi-messenger astronomy is growing, the discovery of

UHE neutrinos remains extraordinarily di�cult. The low flux of neutrinos, in con-

junction with their low cross-section, presents significant challenges. Experiments

must implement massive detector volumes for a small chance at detecting a UHE

neutrino signature. For example, cosmogenic neutrinos are expected to arrive at

Earth with an incident flux of approximately ⇠10 ⌫/km2/yr/str and the low cross-

section of �⇠ 10 �32 cm2 gives an interaction rate in ice (⇢ = 0.9 g/cm3) of < 3 ⇥

10�3
⌫/km3/yr/str [49, 37]. This means detector volumes on the order of 100 cubic

kilometers would detect approximately 1 ⌫/yr.

1.4 Cherenkov Radiation

Physicist Gurgen Askaryan proposed that UHE neutrinos could be observed through

their interactions within a dielectric medium via coherent electromagnetic radiation

[24]. He theorized that when a UHE, relativistic neutrino collides with the nucleus in
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Figure 1.3: Figure from the IceCube Collaboration. Depicted is the neutrino charged
current cross section measurements, divided by neutrino energy, obtained by acceler-
ator experiments. The blue and green lines are the Standard Model predictions for
the ⌫µ and ⌫̄µ. The uncertainties on the deep inelastic cross sections are shown by the
corresponding shaded regions. The red line is for the predicted mixture of ⌫µ and ⌫̄µ

in the IceCube sample. The black line shows the 2017 published measurement of the
multi-TeV neutrino cross section with IceCube. The pink band shows the total 1�
(statistical plus systematic) uncertainty. The cross section rises linearly with energy
up to about 3TeV, but then the increase moderates, to roughly as E0.3

⌫ , due to the
finite W± and Z0 masses [49].

a dielectric, a particle shower consisting of photons, electrons, and positrons would be

produced. If this particle shower traveled in the medium at a speed greater than the

speed of light in the medium, Cherenkov radiation will be produced [40]. These high-

energy neutrinos interact with a nucleus primarily through deep inelastic scattering

through the weak interaction. There are two types of interactions that neutrinos ex-

perience: (1) neutral current (NC) which is mediated by a Z boson, and (2) a charged
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current (CC) which is mediated by a W boson [38]. These interactions can be seen

below [27], [77]:
(�)
⌫ l +N !

(�)
⌫ l +X (NC)

(�)
⌫ l +N ! l

± +X (CC)

(1.3)

where N is the nucleus, l is the lepton flavor and X is a hadronic shower. Most

current neutrino detection techniques are focused on an indirect method of searching

for the remnants of these two types of weak interactions. Fig. 1.4 shows Feynman

diagrams of each process.

Figure 1.4: Illustration of the Feynman diagrams for the Charged-Current (left) and
Neutral-Current (right) deep inelastic neutrino-nucleon scattering [37].

As mentioned, if particles are moving at relativistic speeds and are in a dense

dielectric medium with an index of refraction greater than 1, then the particles will

propagate faster than the phase velocity of light in the medium, thus emitting optical-

Cherenkov radiation (dominated by blue light). Similarly, an electromagnetic shower

(produced by an interaction) traveling at relativistic speeds in a similar media will

emit Askaryan radiation. Askaryan radiation occurs because as the particle shower

travels through the dielectric, it develops a 20% negative charge due to Compton
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scattering of electrons and the annihilation of positrons in the shower with electrons

in the medium [40]. The change in the net current of the cascade over time causes

the radio pulse [24]. For wavelengths comparable to the width of the shower, the

radiation will add coherently, thus creating measurable broadband (10 - 1200MHz),

fast radio pulses.

Figure 1.5: Illustration of the Cherenkov E↵ect. If the particle velocity is less than
c/n, the resulting electromagnetic radiation does not constructively interfere (left).
When the particle velocity is greater than c/n, the radiation constructively interferes
(center). This produces a cone of light (right). Adapted from [91].

The discovery of Askaryan emissions has been revolutionary in the search for UHE

neutrinos. Unlike optical-Cherenkov, attenuation lengths in the Antarctic ice have

been measured to be on the order of 1 km, whereas optical light attenuates on the

order of tens of meters; thus, the use of Askaryan emissions grants a detection volume

that is orders of magnitude larger than that of optical-Cherenkov-based experiments.

Large detector volumes are essential in the search for UHE neutrinos as potential

events are so rare.
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1.5 Experiments Detecting Cherenkov or Askaryan Radia-
tion

A number of experiments exist that seek to improve limits on the di↵use flux

of UHE neutrinos and to detect a UHE neutrino; this section will provide a brief

overview of some leading experiments. Fig. 1.6 shows the current leading limits for

the experiments ARA, ANITA, and IceCube, which are mentioned in the following

sections, as well as Auger and ARIANNA which will not be discussed in detail.

Figure 1.6: Theoretical predictions for the cosmogenic flux of neutrinos and recent
limits from existing UHE neutrino experiments. The measured astrophysical neutrino
flux (data points) is from IceCube [9] and the limits (solid lines) are from IceCube [7],
Auger [1], ANITA [56], ARA [17, 20], and ARIANNA [93]. The dashed lines and
shaded bands are theoretical models from Olinto et. al. [92], Kotera et. al. [75], and
Ahlers and Halzen [15]. Figure by Amy Connolly.
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1.5.1 IceCube

Optical-Cherenkov experiments have been widely successful at measuring neutri-

nos up to 10PeV. These experiments rely on photomultiplier (PMT) tube detection

technologies, where PMTs are arranged in an array in an optically transparent ma-

terial. As discussed in the previous sections, the interaction of a neutrino with the

medium – usually ice or water – causes a particle shower. When the shower, or a

daughter lepton, disperses in the ice, optical-Cherenkov is emitted. As this shower

or lepton passes a PMT, signals from the optical (blue) spectrum are recorded and

details such as signal strength, pattern, distance traveled can be inferred. An analysis

of the data allows for reconstruction of neutrino direction, lepton flavor, and energy.

One of the most prominent optical-Cherenkov experiments utilizing these meth-

ods is IceCube. The IceCube Neutrino Observatory is a cubic kilometer, optical

Cherenkov detector located in Antarctica. IceCube aims to measure signals cre-

ated from particles – such as neutrinos and cosmic rays – emitted from astrophysical

sources with hopes of gathering information about their origin [106]. IceCube fo-

cuses on three main measurements: (1) cosmic rays, (2) neutrino oscillations, and (3)

astrophysical neutrinos.

In September 2017, IceCube detected a 0.3 PeV neutrino within 0.1 degree of a

flaring blazar, TXS 0506+056 [16]. Further analysis of more than 9 years of IceCube

data found an excess flux of neutrinos above the expected atmospheric background

in the direction of the blazar [8]. This result provides the first significant (3.5�)

evidence for an astrophysical source of neutrinos. This result prompted a multi-

messenger investigation with additional experiments finding significant results in the

direction of TXS 0506+056 [14]. Prior to the 2017 discover, IceCube had detected
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high energy neutrinos in the direction of astrophysical sources, but the results were

not significant [71].

IceCube consists of a lattice of photo-multiplier tubes (PMTs) buried over 1 km

deep in Antarctic ice to detect Cherenkov radiation (Fig. 1.7). IceCube’s instrumen-

tation allows for the detection of both tracks and cascades, and the estimation of

the parent neutrino’s energy and direction [5]. The number of photons produced is

related to the energy of the parent neutrino [4]. For both tracks and cascades, the en-

ergy of the parent neutrino can be calculated from the deposited energy within 15%.

Since muons of high energy can travel distances larger than that of the detector’s

dimensions, the energy has to be calculated indirectly [61]. The energy loss of the

muon throughout the detected track is used to estimate the parent neutrino’s energy

[2]. In addition, tracks allow for a better directional reconstruction, within <1� of

the parent neutrino compared to ⇠15� for cascades.

The main volume of IceCube is an array of 5160 digital optical modules, or DOMs

(each containing a PMT), installed between 1450m and 2450m below the surface on

86 strings [5]. Each string holds 60 DOMs, which reside along a single cable. For

the in-ice array, each vertical string has a separation of 17m per DOM. The strings

are arranged over a volume of one cubic kilometer of ice in a hexagonal pattern on

a triangular grid with a 125m horizontal spacing [5]. Note that depths between

2000m and 2100m are not instrumented due to a “dust layer” where the ice contains

impurities resulting in optical scattering and absorption. DeepCore is a denser central

region of DOMs beneath 1750m that provides insight into lower energy neutrinos.

Finally, IceTop is an array of DOMs on the surface of the ice with the primary goal of

detecting secondary particle showers resulting from interactions of high-energy cosmic

11



Figure 1.7: Schematic of IceCube Neutrino Observatory, showing the location of the
detectors in the ice [16].

rays in the atmosphere. IceCube’s identification of both tracks and cascades caused

by neutrino interactions can be seen in Fig. 1.8.

1.5.2 ARA

Di↵ering from optical-Cherenkov experiments such as IceCube, Askaryan-focused

experiments seek to explore higher energies at limits above 1019.5 eV. In this thesis,

two main Askaryan experiments will be reviewed: (1) the Askaryan Radio Array

(ARA) and (2) the Antarctic Impulsive Transient Antenna (ANITA).

ARA is located at the South Pole, a few kilometers from the IceCube observatory.

It consists of five stations buried in the Antarctic, as seen in Fig 1.9. These stations

consist of a prototype station, the “Testbed”, one station at 100m depth (A1), and
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Figure 1.8: Visualizations of two high energy neutrino events detected by IceCube.
Each faint vertical white line represents a string of detectors with white dots repre-
senting DOMs that did not detect any photons. The color illustrates the arrival time
of the signal, with red being the earliest and blue being the latest. The larger the
sphere, the more photons detected. On the left, a spherical cascade from an electron or
tau neutrino is shown with a deposited energy of 1.16PeV. On the right, an up-going
muon track from a neutrino is shown with a deposited energy of 2.6 PeV [16]. Every
high energy event can be seen in 3D at icecube.wisc.edu/viewer/he_neutrinos.

four stations buried 200m deep (A2-5). Each station, or set of antennas, operates

separately. The full five-station array is referred to as “ARA5,” with individual

stations identified as A1, A2, A3, A4, and A5 [21].

Each station consists of 4 measurement strings, which consist of two vertically-

polarized antennas (VPol) and two horizontally-polarized antennas (HPol), for a total

of 16 antennas per station, as seen in Fig. 1.10. The measurement strings are located

30m apart, forming a square. The ARA antennas are broadband using azimuthally-

symmetric bicone antennas for VPol and quad-slot antennas for HPol. In addition

to the measurement strings, each station has two calibration strings located at 40m,

with one VPol and one HPol antenna. These provide pulses that are used to verify

the lifetime and, as the name implies, calibrate the measurement antennas. The ARA
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Figure 1.9: A map of the current five ARA stations instrumented at the South Pole,
and nearby landmarks and buildings [21].

antennas must fit into narrow holes in the ice, with the VPol antennas as birdcage

bicones (13.9 cm diameter) and the HPol antennas as ferrite-loaded quad-slot antennas

(12.7 cm diameter) [23, 19, 21].

When a signal reaches the ARA antennas, it is band-pass filtered to 150-850 MHz,

as well as notch-filtered at 450 MHz to remove South Pole radio communications [21].

After this filtering, the signal is amplified by 34 dB, converted to an optical signal,

and passed on the Data Acquisition Electronics (DAQ) box on the surface of the ice.

All data is then transmitted to the IceCube Counting Laboratory (ICL). More details

on the ARA data are provided in Chapter 4.1.3.

The ARA stations A2 and A3 have accumulated fractional livetime since deploy-

ment that can be seen in Fig. 1.11; these stations have accumulated approximately

1100 days of livetime as of 2019.
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Figure 1.10: An illustration of an ARA station and the neutrino detection methods,
showing a neutrino interacting in the ice [21].

1.5.3 ANITA

ANITA’s mechanism for observing these UHE neutrino signals is through an array

of dual-polarized horn antennas suspended on a NASA Long-Duration Balloon, flown

about 37,000 meters above the Antarctic ice. The ANITA experiment is illustrated

in Fig. 1.12. ANITA seeks to identify particle cascades refracting out of the ice

surface from neutrinos interacting in the Antarctic ice. ANITA is launched from a

starting point near McMurdo Station, Antarctica. After ANITA launches, it flies in

circular orbits over the continent of Antarctica as seen in Fig. 1.13. ANITA scans

approximately a million cubic kilometers of ice, making it the neutrino detector with

the largest detection volume. ANITA, sitting approximately 8m tall, flies about 40 km

above the ice. It is sensitive to radio signals between 200 and 1200MHz [50]. The
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Figure 1.11: Fractional livetime of ARA A2 and A3 stations through 2017 [21].

ANITA experiment has launched four flights and currently sets limits above about

1019.5 eV on the di↵use flux of neutrinos [56].

ANITA-IV is made up of 48 highly directional horn antennas. The upper two

layers of antennas are evenly spaced 45 degrees apart and the layers o↵set by 22.5

degrees for uniform coverage. Antennas in the third layer are spaced 22.5 degrees

apart, and the antennas on the lowest layer are spaced 45 degrees apart. The entire

array is approximately 8 m tall. All of the antennas are pointed 10 degrees below the

horizon in order to observe distant ice and are painted white to reflect sunlight and

regulate temperature. ANITA’s antennas are capable of observing both horizontal

and vertical-polarized signals between 200 and 1200 MHz [55].

ANITA flies with an added experiment box where data processing and storage

occurs; thus, recovering the balloon is crucial. This box contains ANITA’s triggering

logic computer systems and data storage, which all rest within a large Faraday hous-

ing. High-priority digitized data is transmitted back via a bandwidth-limited satellite

network to ensure that ANITA is properly functioning.
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Figure 1.12: The ANITA experiment concept with a photo of the ANITA-IV payload
in the upper left and potential detection methods. Ultra-high energy neutrinos inter-
act with the Antarctic ice, thus producing a radio pulse (Askaryan radiation). UHE
cosmic ray interactions in the atmosphere produce a shower of secondary particles
that interact with the geomagnetic field and can also produce a radio signal [50].

ANITA-IV was launched and successfully deployed for 28 days of flight time start-

ing December 2, 2019. It had a livetime of 94 percent of the time of the flight, leaving

ANITA with a livetime of 27.3 days [55].

1.5.4 Importance of optimized detectors

As of this publication, UHE neutrinos have not been detected. The first ARA sta-

tion became active in 2011 and the first flight of ANITA was in 2006; however, despite

searching for UHE neutrinos for over a decade, no definitive signals have been found.

The lack of UHE neutrino events highlights the need for improved detectors and

experiments. To that e↵ect, the next generation experiments are undergoing large

improvements to increase their detection volume compared to current experiments
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Figure 1.13: Flight path simulated in icemc, ANITA collaboration simulation soft-
ware, for the ANITA-III (left) and ANITA-IV (right) flights [50].

and thus increase the probability of a UHE neutrino signal [12]. Unfortunately, these

improvements are costly and require significant time to implement. Improving our

sensitivity will provide a larger sample size which can give us a better understanding

on the density of sources producing UHE neutrinos, and cosmic ray composition [48].

Furthermore, a larger sample provides greater resolution in understanding UHE neu-

trino cross sections [39].

The value of detector optimizations can be quantitatively explored by estimating

the expected number of neutrinos detected by an experiment. This requires the

e↵ective volume of the experiment and the neutrino flux. The flux is a measurement

of the number of neutrinos per energy per e↵ective area per solid angle per second.

This can be mathematically expressed as:

F (E) =
dN

dE⌫ dAe↵ d⌦ dt
(1.4)
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where N is the number of particles, Ae↵ is the e↵ective area, t is the time and ⌦ is

the fractional sky coverage or solid angle [51]. The e↵ective area is related to the

e↵ective volume by the equation [57]:

[A⌦]e↵ =
[V ⌦]e↵
`int

(1.5)

where `int is the interaction length.

The di↵erential of Eq. 1.4 can then be separated and integrated to find the number

of particles. This is done under the assumption that the e↵ective area is constant over

each energy bin and that each variable is independent of their relationships known.

dN = F (E) dE⌫ dAe↵ d⌦ dt

Z
dN =

Z
F (E) dE⌫ dAe↵ d⌦ dt

N = F (E) ·�E · T · [A⌦]e↵ (1.6)

where �E is the energy bin, T is the operational time of the experiment, and [A⌦]e↵

is called the acceptance. Substituting Eq. 1.5 into Eq. 1.6, the number of neutrinos

detected by an experiment is given by:

N = F (E) ·�E · T · [V ⌦]e↵
`int

(1.7)

One goal of the detector optimization given in Ch. 3 is to improve the e↵ective

volume by a factor of two. Eq. 1.7 demonstrates that doubling the e↵ective volume

would double the expected number of neutrinos for a given flux.
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The completed ARA37 experiment (whose development is currently paused at

5 stations) is expected to have a acceptance of 2.33 ⇥ 109 cm2str at an energy of

1018 eV [19]. Using the models shown in Fig. 1.6 the cosmogenic flux of neutrinos

at 1018 eV can be estimated to be 10�35 cm�2s�1str�1eV�1. Substituting the ARA37

acceptance and cosmogenic flux at 1018 eV into Eq. 1.6 gives

N = [10�35 cm�2s�1str�1eV�1] · [1018.5eV � 1017.5eV] · [0.75 year] · [2.33⇥ 109cm2str]

which gives a total number of detected 1018 eV neutrinos per year of N = 1.57. This

was found using an energy bin of 1018.5�1017.5 eV and an operational livetime of 75%.

Assuming a Poisson distribution with a mean of 1.57, there is more than a 20%

probability of no events being detected in a given year. Doubling the e↵ective vol-

ume through optimizations, would result in an expected number of detected 1018 eV

neutrinos per year of N = 3.14. This would reduce the probability of no detected

neutrinos in that energy range to under 5% (95% probability of detecting at least one

UHE neutrino signal).

This result demonstrates the potential impact of improving the sensitivity of UHE

neutrino detectors. By optimizing the antennas themselves, and improving analysis

techniques, we can improve the sensitivity of each new generation of experiment at

minimal costs. The use of evolutionary algorithms to optimize the detectors and anal-

ysis will accelerate the discovery of UHE neutrinos and other astrophysics outcomes.
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Chapter 2: Evolutionary Computation and Machine

Learning

Evolutionary algorithms and machine learning are powerful approaches to opti-

mize experiments and perform data analysis. These techniques provide means to

discover solutions to complex problems that traditional methods would be unlikely

to find. This chapter initially provides an introduction to the critical concepts of

overfitting and underfitting. The following section gives a brief discussion of di↵er-

ent machine learning methods and their application. Genetic algorithms and genetic

programming are discussed in detail in the final sections. This chapter provides the

necessary background to understand the main projects in this thesis.

2.1 Machine Learning

Machine learning (ML) is a type of data analysis that automates analytical model

building and is closely related to the evolutionary algorithms investigated in this

dissertation. It exists as a branch of artificial intelligence, as it is based on the premise

of systems learning from data and, thus, identifying patterns with minimal human

intervention. There are two types of ML algorithms, supervised and unsupervised.

Though we will not be utilizing unsupervised ML in this thesis, we will discuss both

briefly.
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2.1.1 Unsupervised Learning

ML algorithms that are unsupervised cluster and analyze unlabeled data sets with

no preassigned scores or labels. In this case, the goal is to learn the data’s inherent

structure without the use of explicitly provided labels, thus discovering all of the

unknown patterns in the data. Examples of unsupervised learning algorithms include

clustering and principal component analysis. In clustering analysis, the algorithm

will automatically group the training sample into categories with correlated features.

In principle component analysis, the algorithm compresses the training data set by

identifying useful features and discarding the useless ones. Unsupervised ML has a

significant advantage in that it requires a minimal workload to prepare a training

sample.

2.1.2 Supervised Learning

Supervised ML algorithms use sample data, known as the “tr aining sample,” to

build a model used to make independent predictions or decisions without the further

assistance of the user. These data sets used for training are labeled or have preas-

signed scores. Supervised learning is usually done in the context of classification or

regression. Classification categorizes a set of data into classes, such as facial recog-

nition technology. Regression predicts continuous values, such as finding the best fit

line. A depiction of these methods can be seen in Fig 2.1. Note that evolutionary algo-

rithms can also solve both of these types of problems (as well as many others). Some

of the most widely used learning algorithms we will discuss are K-nearest neighbor,

neural networks, and random forest.
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Figure 2.1: A depiction of classification (left) and regression (right) used in supervised
machine learning. The red dashed line for classification indicates the models threshold
between the two groups. The red dashed line for regression indicates the models best
fit of the data [104].

K-nearest neighbor (k-NN) is a pattern recognition algorithm used for both clas-

sification and regression. With k-NN, the algorithm is given a training sample, which

classifies coordinates into groups identified by some feature. When the algorithm is

given a testing sample to test the classification accuracy, some of these new data

points may hold features that easily classify them into one group or the other; how-

ever, for any unclassified point, we can assign it to a group by observing what group

its nearest neighbors belongs to using the Euclidean distance. It is important to note

that the k is a user-defined constant and determines the number of neighbors to con-

sider when assigning a classification. A depiction of this classification method can be

see in Fig. 2.2.

Random forest is a supervised ML algorithm that also solves regression and clas-

sification problems. Random forest is an ensemble learning method that utilizes a
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Figure 2.2: Illustration of the k-NN classification, where the green circle is being
classified to red triangles or blue squares. The resulting classification is dependent
on the value of k. If k=3, the green dot would be classified with the red triangles
because there are more red triangles in the three nearest neighbors (solid circle). If
k=5, the green dot would be classified with the blue squares because there are more
blue squares in the five nearest neighbors (dotted circle). Illustration by Antti Ajanki
is licensed under CC BY-SA 3.0.

multitude of decision trees and merges them to get a more accurate and stable pre-

diction. Decision trees are used as a predictive model that maps observations about

data to make conclusions about the target value. Branches represent the data at-

tributes that are found in observation and the conclusions about the target value are

the leaves. When learning the data, the training set is divided into subsets based on

an attribute value test, which is repeated on each of the derived subsets recursively.

Once the subset at a node has a value equal to the target, the recursion stops. In the

case of classification, the output of random forest is the class selected by the most

trees. A depiction of this method can be seen in Fig. 2.3.

Artificial neural networks (NN) are another subset of machine learning, inspired

by the human brain by mimicking how biological neurons work. The basis of a NN
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Figure 2.3: Illustration of a random forest showing multiple decision trees. Illustration
by Venkata Jagannath is licensed under CC BY-SA 4.0.

are nodes, called artificial neurons, which are mathematical functions that collect and

classify information. Each connection acts like the synapses in the brain and transmits

a signal to other neurons. Once the artificial neuron receives and processes a signal,

it communicates to the neurons connected to it. NNs contain layers of interconnected

nodes with an input layer, one or more hidden layers, and an output layer. Each node

has a weight (representing the significance of the node) and a threshold associated

with it. All weighted inputs in a layer are summed and then passed through an

activation function to determine the output. If the output exceeds the threshold, it

triggers the node and sends data to the next layer. Data is not passed on to the

next layer if the output does not exceed the threshold. For supervised learning, we

evaluate the algorithm’s accuracy as it trains using a cost (or loss) function, typically

the mean squared error [36].
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Figure 2.4: General model of an artificial neural network, where the input values xn

are multiplied by a weight wn to reflect their relative importance to the determination
of an output target. The neuron adds up the weighted inputs, and the activation
function determines whether the summed input meets the set threshold value. Figure
from [36].

2.2 Underfitting and Overfitting

Many computational methods have similar concepts that are important to under-

stand. In this section, I will introduce some of those ideas before describing specific

techniques.

An important technique in machine learning and model building is how well the

model is fit to the data. Typically, data is split into training and testing samples,

where the model is built using the training sample, but the evaluation of the success

of the model is performed on the testing sample [96]. This division helps prevent the

model from only being able to describe the given data well but failing to extrapolate

to new data.
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A more advanced technique of model evaluation is k-fold cross-validation. In this

case, the initial sample is partitioned into k equally sized samples at random. Of the

k samples, one sample is reserved to be used as the testing sample, which is used to

validate the training the algorithm has undergone [42]. The rest of the k-1 samples

are then used as the training sample. This process is repeated k times, where each of

the k samples is used once as the testing sample. The k results are then averaged to

produce an estimate.

Overfitting occurs when a model fits the particular set of data too closely and fails

to model additional data accurately [96, 108]. An example of overfitting is shown in

Fig. 2.5. Typically, overfit models are too complex with more variables than necessary.

Instead of gaining a universal understanding of the population data, an overfit model

will have a complete understanding of the sample training data (including noise).

Conversely, underfitting occurs when the model is too simplistic and fails to de-

scribe the data accurately. Underfit models typically have too few variables or pa-

rameters and thus inaccurately predict both the training and testing samples.

In practice, underfitting is generally avoided, because the model fails to perform

well on all data sets. It can be much more challenging to identify and prevent overfit-

ting. Using training and testing samples can help reduce the possibility of overfitting

since the evaluation of the model is done on a data set di↵erent than the training sam-

ple. However, this does not completely eliminate the possibility because the model

could still be overfitted on the training data and perform well enough on the testing

sample. One solution is to attempt to produce a model with the fewest number of

parameters. For example, if two models both describe a testing sample the same, but
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Figure 2.5: An illustrated example of overfitting a data set. While the green line
perfectly separates both colors, it is overly complicated and unlikely to perform well
on an unseen data set. The black line depicts a model that is properly fitted, with
slightly more error on this data set, but will likely perform just as well on new data.
Illustration by Ignacio Icke is licensed under CC BY-SA 4.0.

one uses four variables and the other uses ten, the model with for variables would be

preferred. Some techniques will consequently penalize more complex models.

2.3 Genetic Algorithms

GAs are a type of evolutionary computation used to discover possible solutions to

complex problems with a large parameter space [42]. The resulting multiple gener-

ation convergence can evolve solutions for problems that would have otherwise been

di�cult or not possible through more traditional techniques [42, 115].

Each GA consists of multiple individuals, which are potential solutions charac-

terized by a set of genes. Genes define components of the object being optimized

and are used to define a model or individual. Genes can be represented by using an
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integer value, Boolean, or multi-unit array. Borrowing from biology, individuals are

sometimes called chromosomes, as they are a collection of genes. A population de-

scribes a group of individuals all belonging to the same iteration/generation. As with

many computation-based optimization algorithms, GAs are a process that optimizes

solutions through an iterative approach. We define these iterations as our generation.

Each generation is tested against a predefined set of goals. To quantify the per-

formance of an individual, a fitness function is created that generates a fitness score

by using the genes of an individual to assess its performance based on an optimal or

desired goal. This value informs selection methods which pick individuals to create

o↵spring. Each generation of individuals has the potential, but is not guaranteed, to

improve upon the prior [102]. After the individuals are assessed for their fitness to

achieve the desired goal, we select parents to breed and populate the next generation

using selection methods and operators.

The GA workflow is presented in Figure 2.6. First, a population of individuals is

generated, each with randomly generated genes. Each individual is tested through

the fitness function to generate a fitness score. A selection method is implemented

to decide which individuals, called parents, will create the next generation. An op-

erator then uses the parents’ genetic code to create o↵spring individuals for the next

generation [68]. The fitness test is applied to each new individual, generating their

fitness scores. This process is iterated until one or more individuals surpass a specified

fitness score threshold, or until a specified number of generations have passed.

There are many di↵erent techniques to create the new generation. Assuming the

GA has proper structures, such as a variety of selection methods and operators, to
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Figure 2.6: General GA evolution procedure.

maintain genetic diversity (and therefore prevent a local convergence), any combina-

tion of techniques will find the same optimized solutions. The methods of generating

new populations will a↵ect the speed of convergence, and the size of the parameter

space searched. The various methods discussed in the following sections are only a

small subset of the possible methods. New or unique methods are regularly created

to fit the needs of individual problems.

2.3.1 GA Fitness Evaluation

Fitness functions are essential in GAs, as this is what guides the evolution toward

optimal design solutions. Fitness functions are a techniques that provides a single

figure of merit, which tells us how good the individual is with respect to the problem

we are attempting to solve. The goal is to create future populations with higher

scoring individuals and tend away from the worst-performing individuals, while still

fully exploring the parameter space.

Each individual generated must be evaluated by the fitness function to obtain a

fitness score. The evaluation of a fitness function is run repeatedly when using GAs;
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thus, we need to ensure that it is fast. Often the easiest way to ensure speed is to

have a fitness function that maximizes or minimizes the given objective measurement.

Fitness scores must be carefully designed to evaluate the solution properly, and

they can come in many forms. Often an objective function provides a score that is

scaled to produce the final fitness function [80]. Fitness scores can be designed where

the ideal score is either maximized or minimized.

2.3.2 GA Selection Methods

Selection methods are methods used to choose individuals from the current gen-

eration to act as parents, producing the children for the next generation [62]. Each

type of selection method will promote convergence or diversity to varying degrees [30].

GAs often combine di↵erent selection methods and operators in order to ensure ge-

netic diversity. There is a multitude of di↵erent standard selection methods, although

it is common for researchers to design unique selection methods [81, 52]. The follow-

ing section will discuss the most common methods: (1) roulette, (2) tournament, (3)

rank, and (4) elite.

Roulette selection, or proportional selection, is a popular selection method used

in GAs, where the probability of selection is based on the ratio of individual fitness

to the total fitness. For this reason, it is also called fitness-proportionate selection.

The probability of selection of individual i from a population of N individuals is

represented by

P (i) =
F (i)

PN
n=1 F (j)

(2.1)
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Roulette selection is often visualized as a pie chart where the area occupied by

each individual on the roulette wheel, as shown in Fig. 2.7, is proportional to that

ratio of individual fitness to total fitness [81, 52]. This area is set up such that the

sum of all individual’s areas is 1. A random number is chosen between 0 and 1, and

whichever individual’s area it lands within is declared the winner and is passed onto

the operator. Individuals with better fitness values will occupy a bigger area in the

pie chart and, thus, will have a higher probability of being selected.

Figure 2.7: Illustration of roulette selection.

Roulette functions can be linear or non-linear. For linear functions, as used in our

applications, it will give a larger area of the pie chart to larger fitness scores and dis-

tribute the pie slices proportionally. Using non-linear functions, however, can allow

customization of the selection. For example, the use of functions like P (i) /
p
F ,

or P (i) / log (F + 1) allows for lower fitness scored individuals to have a higher
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probability of selection, as compared to their probabilities in a linear function. Al-

ternatively, suppose we are looking to prioritize small di↵erences in the fitness score

or are nearing the end of evolution and wish to be more elitist, we can use functions

like P (i) / F
2 or P (i) / e

F , which will give extra weight to higher scores [58].

Tournament selection is another method of selecting an individual from a popu-

lation of individuals. In tournament selection, individuals are randomly placed into

groups (tournaments) and compared by fitness scores. The individual(s) with the

highest fitness score in each group, or tournament, are then selected as parents [117].

The probability of a participant’s selection can be adjusted by changing the tourna-

ment size; if the tournament size is larger, weaker performing individuals have less

of a chance of being selected, as there is a higher probability of a stronger individual

existing in that group [90].

In rank selection, the N individuals in a population are sorted based on their

fitness score, and they are each assigned a rank, where the best individual is assigned

a rank of N, and the worst individual is assigned a rank of 1 [30, 62]. The rank of an

individual i is represented by rank(i). Then the probability of being selected is

P (i) =
2 rank(i)

N(N + 1)

The selection of parents is then done in the same method as the roulette method.

However, rank selection performs better than roulette when fitness scores are close

together, which e↵ectively causes the roulette method to be a random selection [62].

In order to ensure high fitness individuals survive, elite selection (or elitism) can

be utilized. In elitism, one or more individuals with the highest fitness score from the

last generation are carried over, without any changes in genes, to the next generation.

33



This allows us to improve the GA’s performance and ensure that the best individuals

are continuing to participate.

2.3.3 GA Operators

Genetic operators are the primary methods of producing new gene variations

after the parents have been selected using selection methods. Genetic operators are

techniques used to modify the parent(s) genes to produce a child (new individual) in

the next generation. This section focuses on the following types of genetic operators

utilized in the GENETIS studies: (1) crossover, (2) mutation, and (3) reproduction.

Note that these operators could be run in parallel by with di↵erent groups of the

parents using only one genetic operator each or with groups of parents going through

multiple operators in a row to produce o↵spring.

Crossover is one method to stochastically generate new individuals from a previous

population. Crossover typically uses two parents to produce two new o↵spring. One-

point crossover chooses a location, designated as the crossover point, on a vector

containing both parents’ genes at random. As seen in Fig 2.8, genes to the right

of the crossover point are swapped between the two parents. The result gives two

children that contain genetic information passed on from both parents. Two-point

crossover chooses two points on both parents’ sets of genes at random. Genes in

between the two crossover points are swapped between the parents, as seen in Fig

2.9.

Similarly, k-point crossover is a generalization of this strategy where k crossover

points are selected. Finally, there is uniform crossover. For uniform crossover, the

genes are no longer broken up into segments by choosing crossover points; instead,
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each gene is treated separately and, using equal probability, we choose which gene to

include in the child. An illustration of this can be seen in Fig. 2.10. This method can

also be repeated using a higher weighted probability on genes for one parent to bias

those genetics. This method can produce one or two children and is not bound to the

same number of o↵spring as parents, whereas k-point crossover always produces the

same number of o↵spring as parents.

Figure 2.8: One-point crossover, where one point is randomly selected and everything
to the right of that point is swapped between the two parents. Illustration from [94].

Figure 2.9: Two-point crossover, where two points are randomly selected and alter-
nating segments are swapped between the two parents. Illustration from [94].

Mutation is a process that utilizes only one parent and produces a child by altering

the value of one or more genes. The mutation operator can also be used on a child

recently created by another genetic operator. Mutation is a type of genetic operator

that is attractive for its ability to maintain genetic diversity in a population, which is
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Figure 2.10: Uniform crossover, where, with equal probability, we select one of the
genes from either of the two parents for each gene passed to the o↵spring; in this case
each gene is treated separately. Illustration from [94].

important for avoiding convergence at a locally optimal solution instead of a globally

optimal one.

Similar to crossover, there are many approaches to mutation, such as swap mu-

tation, scramble mutation, uniform mutation, and Gaussian mutation. With swap

mutation, two of the gene positions are selected at random, and the gene values are

swapped with each other, as seen in Fig. 2.11. This is only possible when the gene val-

ues can be reasonably exchanged. Scramble mutation has a similar approach, where

instead of choosing two gene values and swapping them, a subset of genes are chosen

and their values are randomly reorganized. An example of this method is shown

in Fig. 2.12. Finally, the last methods are uniform and Gaussian mutation. These

methods are relatively similar, as they both require selecting one or more genes on

a single individual and reassigning each gene a new value. For uniform mutation,

the new value is selected from a range of allowed values, with each value having an

equal probability of selection. For Gaussian mutation, our new gene value is selected

based on a Gaussian distribution centered around the original parent’s value for that

gene (or a user selected value) and with a predetermined width. It is also possible to

mutate every gene of an individual; this is sometimes known as immigration since it

is e↵ectively introducing a new individual.
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Figure 2.11: Swap mutation operator, where two genes on one individual are selected
at random and the values are swapped. Illustration from [95].

Figure 2.12: Scramble mutation operator, where a subset of genes on one individual
are selected at random and the values are shu✏ed. Illustration from [95].

Finally, our last operator to be discussed in this review is reproduction (also

known as cloning or copying). Reproduction works by taking a single selected parent

and passing its genes directly to the child without modification. This is a form of

elitism; however, in this case, it is not necessarily taking an individual with the highest

fitness score over the entire population, as the best overall may not have survived the

selection process. Thus, it is taking one of the best performing individuals that (1)

survived the selection process and (2) exists within the group of parents making their

o↵spring via the reproduction operator.

2.4 Genetic Programming

Genetic Programming (GP) is a type of evolutionary algorithm extremely similar

to GAs, with the distinct di↵erence that GAs evolve chromosomes that contain val-

ues of genes. In contrast, GPs evolves individual programs [96, 108]. The simplest
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example of a program that can be evolved is an equation or a model. GPs operate

with the same steps as GAs shown in Fig. 2.6, but the individuals are programs.

While a GA explores the solution space, a GP explores the program space, where

the program could explain the solution [96]. For example, a GA may attempt to evolve

genes that describe a specific geometry. A GP would attempt the same problem by

evolving a mathematical function (program) that is maximized when the geometry is

correct. Each individual in the GP would be an equation comprised of the variables

combined using various mathematical operators.

The simplest example of GP, and still one of the most common techniques, is a

tree-based equation. In these GPs, the program is represented with a syntax tree

structure, where each node is a mathematical operator or an operand [96]. The

operand nodes are always at the end of a branch and are also called leaves. An

example of this can be seen in Fig. 2.13, which shows an example tree structure.

Figure 2.13: Representation of the a
2 + b

2 with a tree structure.
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Many possible operators can be used in GP syntax trees. Besides the elementary

mathematical operators (+, �, ⇥, and ÷), more complex mathematics operators (ex-

ponential terms, log, ln, p , exp,
P

, etc), trigonometric functions (cos, sin, tan, etc),

and Boolean operators (AND, OR, ). It is also possible to design unique or specific

function terms. Every operator has an arity value, which describes the number of

nodes that it acts on [96]. The operands are the user-defined variables and coe�cients

that the operators act on.

Trees can be described by the number of nodes they contain and the tree depth.

The tree depth is the number of layers, starting with 0 at the topmost node. For

example, the tree shown in Fig. 2.13 has a depth of 3. Tree depth is a vital user

parameter because restricting it can help reduce overfitting and bloat. As previously

mentioned, more complex solutions are more likely to be overfit, with the additional

complexity leading only to capturing additional noise in the data. The number of

nodes is related to the depth of a Full tree by the following equation, n is the number

of nodes and d is depth [107].

n = 2d+1 � 1 (2.2)

Tab. 2.1 shows the number of nodes for some possible depths. Notably, the hy-

pothesis equation can become highly complicated at relatively low depths.

There are two common structures in syntax trees, called Full and Grow [96]. The

Full structure is symmetrical, with each branch reaching the same final depth. The

Grow structure allows for each branch to have a di↵erent depth. Grow trees are

generally preferred because they can evolve to more straightforward solutions. While

a Full tree can often achieve the same simplified equation as a Grow tree, it would

39



Table 2.1: Relationship between the depth of a Full tree and the number of nodes

Depth Nodes
0 1
1 3
2 7
3 15
4 31
5 63
6 127
7 255
8 511
9 1023
10 2047

require operands canceling out and a more complex structure to achieve the same

result. The di↵erence between Full and Grow trees can be seen in Fig. 2.14. Grow

trees can su↵er from being too simplified and failing to produce the desired result if

a more complex structure is required to describe the data.

Figure 2.14: Illustration of a Full tree structure (left) and a Grow tree structure
(right).
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The most common technique for GP tree structures is called the Ramped Half/Half

method [96]. In the ramped method, the initial population of trees is built with half as

Full trees and half as Grow trees. All subsequent generations allow for the individual’s

structure to be “grow”. The mixed initialization allows for a high level of complexity

to be introduced initially, with future generations having improved genetic diversity.

2.4.1 GP Operators

GP fitness functions and selection methods operate similarly to GAs, so they will

not be discussed in detail here. Genetic operators are conceptually the same for

each type of algorithm but behave somewhat di↵erently for tree structures. GPs use

four main genetic operators to search the programmatic space, although unique or

customized operators are possible. Unlike the operators used in GAs, these modify

the structure of the tree itself.

The first operator is reproduction and acts in the same fashion as described for

GAs, where the individual is copied directly into the next generation.

The next type of genetic operator is point mutation, which takes a single parent

and modifies one node to produce a child, as illustrated in 2.15 [96]. Note that any

of the nodes, including mathematics operators, could be modified.

Another genetic operator used by GPs is branch mutation, where each node of

a branch of a single parent tree is modified. First, a node is selected from the tree.

Next, that node and each of the nodes lower on the tree are modified. If the individual

is either a ramped or grow tree, the size of the branch can also be modified, allowing

it to grow or shrink [96]. Note that if a terminal node is selected, branch mutation

behaves in the same fashion as point mutation. An example is presented in Fig. 2.16.
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Figure 2.15: Representation of the point mutation genetic algorithm. One node from
the parent is chosen and altered.

The last genetic operator discussed is crossover. Crossover takes two parents and

swaps a branch from each of them to produce two children [96]. As with branch

mutation, the size and shape of the trees could change (if permitted by the settings).

Also, only a single node could be altered if terminal nodes were selected from each

parent. An example of crossover is given in Fig. 2.17.
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Figure 2.16: Representation of the branch mutation genetic algorithm. One branch
from the parent is chosen and altered.

Figure 2.17: Representation of the crossover genetic algorithm. One branch from
each parent is selected and swapped to produce two children.
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Chapter 3: Antenna Optimization with Genetic Algorithms

3.1 Introduction to GENETIS

The goal of the Genetically Evolving NEuTrIno TeleScopes (GENETIS) project

is to optimize the science outcome of detector designs in high-dimensional parameter

spaces to advance the field of astroparticle physics. GENETIS was started in 2017

at The Ohio State University. As a first application, GENETIS has produced a Ge-

netic Algorithm (GA) that evolves antenna geometries intended for ultra-high energy

neutrino detection with the ARA experiment. GENETIS is rare in its application

of machine learning for designing an antenna using a science outcome as the sole

measure of fitness in a GA. The GENETIS group consists of very unique group of

individuals, with much of the work being undergraduate-driven. This chapter begins

with an introduction to the GENETIS project, then describes the early projects and

the current GENETIS GA. Finally, I will discuss the two main applications of the

GA: evolving physical antennas and evolving gain patterns.

GENETIS is seeking to help the search for one of the important missing piece of

particle astrophysics, the detection of ultra-high energy (UHE) neutrinos at energies

above about 1018 eV [6]. A number of experiments employ antenna arrays to detect

44



Askaryan radiation produced from a neutrino-ice interaction (such as those in Antarc-

tica or Greenland) [24, 66]. These experiments include ANITA, ARA, ARIANNA,

and RNO-G, which utilize a variety of di↵erent antenna types [40, 10, 20, 56, 22, 12].

The initial GENETIS goal is to explore optimizing current detector designs residing

with some of these primary experiments via the use of GAs.

The high-dimensional parameter spaces of detector design problems motivate com-

putational methods to improve upon designs made using traditional techniques. In

particular, the design of antennas for UHE neutrino detection has explicit constraints

and a large parameter space, which makes it well suited for machine learning. Given

the immense scale of these experiments and the di�culty in detecting UHE neutrinos,

each detector element must be designed to return the most science for its cost.

GAs were chosen, among other algorithms, because of their e↵ectiveness at com-

plex optimization problems, especially when many optima could exist [98]. The use

of GAs was initially motivated by the NASA ST-5 antenna in which a GA designed

a simple, segmented, wire antenna for satellite communications [69]. Many other

examples exist of antenna design optimization using GAs including Yagi-Uda anten-

nas [70], electrically loaded wire antennas [31], broadband cage antennas [45], planar

antennas [60], pyramid horn antennas [44], ultra-wideband slot antennas [113], helical

antennas [85], patch antennas [46], adaptive antennas [65, 79] and others [64]. GAs

are also more transparent than other optimization techniques, which allows for a bet-

ter understanding of how the algorithm arrived at a final result instead of a black-box

model. Searching a 6-dimensional parameter space (as is the case for the asymmetric

bicone discussed in Chapter 3.4.2), using increments necessary to find a peak fitness

score would require evaluation of more than 108 designs. In comparison, the results
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presented required only 1550 antenna designs to search the same parameter space

with the GA.

GAs have previously been used in the design of various detectors and experi-

ments [84, 83], although rarely used to optimize for a science outcome directly. Some

examples of evolution toward a science outcome include a horn antenna designed

using a GA optimized for detecting Cosmic Microwave Background radiation [87].

Another example is from both the Long Baseline Neutrino Oscillation experiment

(LBNO) and the Deep Underground Neutrino Experiment (DUNE), where GAs were

utilized to optimize the design of neutrino beamlines using simulations of a science

outcome to determine the fitness [33, 101]. GAs have also been used to optimize the

layout of detectors, sensors, shielding, and for trigger optimization [72, 53, 74, 11].

The early endeavors of GENETIS mostly involved proof of concept designs and

tests that are covered in Chapter 3.2. The first project in 2017 used a GA to evolve to

the known length of a quarter wavelength dipole antenna at 3 GHz. Other early work

involved the evolution of a paperclip antenna toward set patterns and performance

tests [100].

Chapter 3.3 describes the heart of the GENETIS project, the custom genetic al-

gorithm. Each step of the GA is discussed in detail, covering the initialization, fitness

evaluation, new generation creation, and termination. What makes the GENETIS

GA impressive is the integration of various types of simulation software to generate

a fitness score. This chapter and Appendix A discuss these programs in detail.

The second stage of investigation is the Physical Antenna Evolution Algorithm

(PAEA) project and is discussed in Chapter 3.4. PAEA uses the GENETIS GA to

investigate the optimization of the ARA collaboration’s in-ice vertical polarization
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bicone antennas. PAEA initially optimized a symmetric bicone antenna with linear

sides, and is now exploring more complex geometry, such as (1) asymmetric bicone

with linear sides and (2) asymmetric bicone with nonlinear sides. The results of each

project are discussed below.

As a third investigation, GENETIS is optimizing the antenna response pattern,

without any antenna designs or geometry. This investigation, called the Antenna

Response Evolutionary Algorithm (AREA), is being run with minimal constraints,

as the goal of this project is to explore what improvement to the neutrino sensitivity

is possible due to improvements in antenna responses alone, without regard to what

physical design might be needed to bring about that response. The results of this

investigation are presented in Chapter 3.5.

My contributions to GENETIS involve heavy involvement in creating the loop

and, more recently, as a mentor and leader for the group. Over time, the early code

has grown, and our network of primary contributors, which now includes myself, 11

undergraduate students, and experts in the fields of GAs, ML, antennas, and additive

manufacturing. As one of the significant architects of our current software package,

I have been guiding all GENETIS projects and working alongside undergraduate

students in the drive to make meaningful contributions. I wrote the user guide to the

loop, which is necessary to understand all of the complex moving parts. Additionally,

I built a training course that on-boards students and prepares them to contribute.

This course includes information on the big picture of UHE neutrino experiments,

GAs, and the GENETIS group, and instructs them in the principles of coding in the

di↵erent languages necessary to improve the GA. Furthermore, I led weekly planning
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and working meetings and developed task tracking and prioritization sheets to help

students stay on track.

3.2 Early GENETIS Investigations

Before getting into the optimization of the antennas, GENETIS produced proof-

of-concept studies to understand GAs better and build a foundation of knowledge.

In this section, we will briefly discuss some of the details of our earlier studies.

3.2.1 Quarter-Wavelength Dipole Antenna

As our first proof-of-concept, the GENETIS team used a GA to recreate the length

solution for a quarter-wavelength dipole at 3GHz. Since this is a problem with a

known solution, this helped us explore both the e↵ectiveness of a GA at finding the

solution and the number of generations it takes on average to arrive at the correct

answer.

The quarter-wavelength dipole study was the first version of our loop software. It

was similar to the current version; however, the fitness evaluation was more straight-

forward. This GA began the loop by randomly generating genes for the initial popula-

tion (radius and length). Genes for the initial population were initialized via a uniform

distribution, converted to a normal distribution using the Box Muller method. The

Box Muller method can be used to convert a pairs of numbers that are uniformly dis-

tributed to numbers that are normally distributed [32]. The fitness function involved

using XFdtd, an antenna simulation software, to produce gain patterns for each solu-

tion. The fitness score was simply the measure of peak gain relative to that expected

for a quarter-wavelength dipole at 3GHz. Solutions with a smaller di↵erence in gain

pattern to the expected result were scored as performing better. The GA modified the
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Figure 3.1: Results for the evolution of a quarter-wavelength dipole antenna solution
showing the improvement of the average length toward the known solution.

generations using mutation, where each individual’s genes were mutated and passed

on to the next generation; thus, all individuals went through the mutation operator to

construct the next generation, and no selection methods were used. Each individual’s

genes were mutated through a Gaussian distribution centered on the current value,

with a standard deviation proportional to the fitness score. The GA converged by

adjusting the magnitude of the mutations based on the fitness score. If an individual

was closer to the solution than prior generations, it mutated with a standard devia-

tion 0.9 times the last deviation. If the individual were further from the solution, it

would mutate using a standard deviation of the prior deviation divided by 0.9.

As seen in Fig. 3.1, the results of this study show that with a population of

5 individuals and 13 generations, the design converged to the expected result very

quickly. The best individuals matched the expected results. The average per gen-

eration doesn’t quite reach the solution because the mutation operator is constantly
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adjusting each individual. This results provided an initial proof of concept for the

use of a GA for antenna design and laid an initial foundation for future GENETIS

endeavours.

3.2.2 Paperclip Antenna Evolution

The subsequent proof-of-concept GENETIS investigation examined a simple, seg-

mented wire antenna design modeled on the antenna design evolved for NASA satellite

communications in 2006 [69]. The following provides the overview and results of our

investigation. Suren Gourapura contributed to this project. The main goal of this

investigation was to further develop the GA with a known type of antenna design and

various types of fitness functions.

The antenna geometry consists of multiple, unit-length segments of wire connected

sequentially. Due to the segmented and bent nature of the resulting antenna, we call

this design a “paperclip antenna.” Each segment can point toward any direction.

Thus, the genes that define each individual are the three rotation angles between

0 and 2⇡ about the three Cartesian axes for each segment. The final individual

geometry consists of several randomly rotated unit vectors attached tip to tail. The

Euler angles for each segment are initially uniformly distributed from 0 and 2⇡.

While several di↵erent fitness functions were explored, one, in particular, directed

the evolution of the antenna to arrive at a desired counterclockwise spiral shape, as

illustrated in Fig. 3.2. This “curl” function was sensitive to changes in the initial

parameters and complex in that all of the evolved rotations had to work together to

produce the final shape, which made it a good test of the algorithm.
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(a) (b)

Figure 3.2: (a) Example of a partially evolved paperclip antenna. Note the general
counterclockwise spiral. (b) The best fitness score of 100 paperclip antennas over 200
generations improved as the antennas evolved to produce a counterclockwise curl.
The GA was performed for various number of segments [100].

The curl fitness function calculates the cross-product between adjacent vectors, ~si

and ~si+1. The fitness score, F , defined by the equation below:

F =
n�1X

i=1

~si ⇥ ~si+1

Defined this way, the angle between neighboring antenna segments is preferred to be

90� and oriented counterclockwise in the x-y plane.

The paperclip antennas evolved over 200 generations composed of 100 individuals

using a tournament selection method and a combination of mutation and crossover

operators. Antennas with various numbers of segments were tested. Fig. 3.2 presents

the results of this analysis, which shows the highest scoring designs per generation

for di↵erent segment lengths. As shown, fewer segments result in achieving a higher

fitness score over fewer generations. Also, a higher quantity of segments increases
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the complexity of the antennas, thereby resulting in a slower approach to the desired

solution.

3.2.3 GA Performance Test

In order to test the performance of the algorithm in the presence of local and

global maximums, individuals were evolved with two genes called length and radius

(although in this case the names are irrelevant as they just represent two parame-

ters), where the fitness function is the sum of two displaced Gaussian distributions of

di↵erent heights. Suren Gourapura was a main contributed to this investigation. In

this case, the genes In the first generation (Generation 0), the 20 individuals, shown

as red dots, covered a region of parameter space that contained both Gaussian dis-

tributions. By the 20th generation, 19 of the 20 individuals were within 2� of the

global maximum, despite some individuals finding the local maximum in earlier gen-

erations. Some initial results are presented in Fig. 3.3. These initial investigations

demonstrated the viability of using a GA to solve complex problems and laid the

foundation for the evolution of antennas for UHE neutrino experiments.

3.3 The Current GENETIS GA

GENETIS prides itself in the development of our unique software package. This

package, referred to as “the loop,” integrates a GA with commercial antenna simu-

lation software, Monte Carlo neutrino simulation software, and more. This software

works together to simulate the testing and performance of the antenna designs. The

remainder of this section will describe the intricacies of the PAEA GA. The AREA

GA utilizes similar mechanisms; di↵erences in the software loop for the AREA GA

will be provided in the AREA section, Ch. 3.5.
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(a) Generation 0 (b) Generation 5 (c) Generation 20

Figure 3.3: Example of PAEA algorithm results at (a) Generation 0, (b) Generation
5, (c) Generation 20. The fitness score is shown in contour plot. Individuals, shown
as red dots, began spread over a wide range, and evolved to group near the global
maximum, despite some finding the local maximum initially [100].

The loop begins by creating the initial population of solutions. The genes are

the parameters that describe the geometry of an antenna, where each antenna is an

individual. After the GA builds the initial set of individuals, it passes through to the

next stage, where we test and assign fitness scores. Our fitness evaluation consists

of simulating the antenna response pattern in XFdtd and testing the sensitivity of

the ARA detector when that individual is used for its VPol antennas using AraSim,

a Monte Carlo simulation software that simulates the in-ice environment for ARA.

Once the performance of the individuals in a generation are assessed in the ARA in-ice

simulation software, we can apply our selection methods and operators to generate the

next solutions to be tested. A general summary of this loop can be seen in Fig. 3.4.

In the remainder of this section, I will be going over the details of each step in the

loop.

53



Figure 3.4: Simplified flowchart of the GENETIS GA.

3.3.1 Initialization

The initialization is the beginning of the GA. For the first generation, each gene is

selected either (1) from a uniform distribution between a set maximum and minimum

value or (2) at random within a maximum or minimum value; which method we utilize

di↵ers depending on the run. For early investigations, such as the symmetric bicone,

method (1) is used. For all later investigations, method (2) is used.

The genes fully define the geometry of each antenna. Each individual is forced

to follow certain constraints. For antenna designs, the main constraint prevents the

antenna from being too large to fit in the ARA boreholes (25 cm). While no re-

quired borehole diameter clearance was specified in the GA, ARA utilized a borehole

clearance of 1.1 cm for the VPol antennas and 2.3 cm for the HPol antennas [23]. Fu-

ture experiments may utilize larger boreholes (over 28 cm in diameter) which would

improve the design sensitivity [13].

The GA also constrains the minimum length of a design due to the limitations of

the simulation software. Simulations of antenna gains become unreliable when the

frequencies being simulated are outside of the antenna’s bandwidth. Treating each

half of the bicone as a quarter-wave dipole, the minimum length of the antenna is
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found using: L = c
4f where L is the length, c is the speed of light in a vacuum,

and f is the minimum frequency. As power for Askaryan radiation is linear with

frequency, low power galactic noise dominates Askaryan radiation below 100MHz [18].

A minimum frequency of approximately 100MHz gives a full length of 75 cm (each

side 37.5 cm), which is defined as the minimum length allowed by the algorithm. The

higher frequencies we are testing could have a smaller length (7.5 cm at 1000MHz),

but these would not be valid at the lower frequency ranges.

3.3.2 Fitness Evaluation

Once every individual in a generation is defined, the fitness score of each individual

must be determined. The calculation of fitness scores is a multi-step process with two

primary programs integrated with the GA. First, the gain pattern of each individual is

simulated. Second, the e↵ectiveness of the design at detecting neutrino radio signals

is simulated and used as the fitness score.

3.3.2.1 Gain Pattern Simulation with XFdtd

XFdtd is a computational electromagnetism simulation software developed by

REMCOM using the finite di↵erence time domain method for calculations [86]. XFdtd

is a crucial part of our software package, calculating the antenna response of our de-

signs. The antenna and antenna properties are simulated in XFdtd by hitting each

model with an artificial burst of radiation to calculate gain patterns.

XFdtd performs simulations by solving Maxwell’s equations in the time domain [99,

78]. In this approach, the geometry of the device and the surrounding space are di-

vided into small discrete cubic segments, called cells, that have associated field lines

in each direction. The size of the cells must be small compared to the wavelength
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of the EM waves. The simulation takes small steps forward in time, with the size of

the step based on the time it takes for a field to travel between each cell. For each

segment of time, the electric fields are calculated and then the magnetic fields. Since

every cell in the simulation space is directly adjacent to others, the fields from one cell

will impact the surrounding cells in each subsequent segment of time. Each cell has

given material properties associated with it, with appropriate boundary conditions.

Excitation conditions, like a pulse or constant EM wave, allow for the response of

the provided geometries to be tested. The calculations continue until a steady-state

position is reached.

In the context of the GA, the antenna geometry parameters are passed into XFdtd

and modeled accordingly. However, XFdtd was built to be operated manually, with a

graphic interface, so a customized back-end script had to be built to operate XFdtd

without manually building each design. XFdtd then simulates the response of an

individual to radiation with a particular wavelength and direction. The simulation

needs to be repeated for each individual for the full range of theta (0 – 180) and phi

(0 – 360), stepping by 5 degrees, until a complete gain pattern is produced for that

single frequency. That process is repeated for each individual 60 times, gathering

antenna response patterns for a range of frequencies between 83.33MHz� 1.066GHz

in equal steps. The results are in the form of gain (dBi) for a range of frequencies

in all directions. Note that the AREA project does not use XFdtd, as the goal is

to evolve gain patterns directly (instead of antennas). Thus, this project bypasses

XFdtd, with the remainder of the loop operating in the same fashion as PAEA.
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3.3.2.2 E↵ective Volume Simulation with AraSim

For the second step in calculating the fitness score, the gain patterns output by

XFdtd are used to calculate the e↵ective volume of the ARA experiment for each

individual antenna design produced in the evolution. The e↵ective volume is the final

fitness score of the individual.

Developed by the ARA collaboration, AraSim is a Monte Carlo neutrino detec-

tion simulator that is able to model neutrinos with energies between E⌫ = 1017 �

1021 eV [67, 18]. AraSim simulates high-energy neutrino interactions in the Antarctic

ice, which produce electromagnetic showers resulting in the production of Askaryan

radiation. AraSim uniformly distributes these interactions within a cylindrical volume

with a 3 km radius centered around the detector [67]. The direction of the incom-

ing neutrino is randomly distributed over a solid angle of 4⇡. The radio emission

propagation is modeled using ray tracing, which determines the path length from

the interaction to the detector. The ray tracing models the depth-dependent index

of refraction of the ice, which is n=1.3 at the surface to n=1.8 at 200m deep [67].

Because of this variable index of refraction, the electromagnetic waves emitted from

the interaction bend en route from the interaction point to the antenna. AraSim

then calculates the polarization, viewing angle, travel time at the receivers, and then

models the system electronics, noise waveforms, and time-domain trigger [67]. The

output of AraSim is a file that contains the same data in the same format (as well as

additional information) as an actual ARA event, including the event waveforms.

Since the number of expected neutrinos detected is directly proportional to e↵ec-

tive volume, we can directly use this value as the fitness score. The e↵ective volume,

[V ⌦]e↵ , quantifies the volume of ice and solid angle of the sky the detector can detect
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signals within, as well as the trigger e�ciencies and interaction cross-sections. This

is determined in AraSim by measuring the fraction of simulated events detected by

the array and multiplying by the simulated ice volume and solid angle. The e↵ective

volume is given by Eq. 3.1 [76].

[V ⌦]e↵ = 4⇡ Vice
Ndetected

Nsimulated
(3.1)

Where Vice is the total volume of ice simulated in AraSim, Ndetected is the total

number of neutrinos detected (accounting for trigger e�ciencies and interaction cross-

sections), and Nsimulated is the total number of neutrinos simulated. In this analysis,

Vice is given by a cylinder around the detector with a radius of 3 km, with a total

volume of approximately 85 km3. For each individual, Nsimulated is 3 ⇥ 105 neutrinos

with an energy of 1018 eV. Simulating this number of neutrinos gives a standard

deviation of 0.11 km3str.

At the end of the generation, each individual will have been simulated, and the

corresponding e↵ective volume from AraSim will be assigned as the fitness score.

Running AraSim is a computationally heavy process and is conducted using the Ohio

Supercomputing Center.

3.3.3 New Generation Creation

GAs use various selection methods to decide which parents and operators will

generate the o↵spring to create a new generation. First, selection methods are used to

choose all of the parents needed to make the next generation. Second, each individual

in the new generation is created using genetic operators. The selection methods and

operators used by GENETIS have grown more diverse as our software has grown.
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More details on the types of selection methods and operators used in our runs will be

discussed in the following section on each project.

3.3.4 Iteration and Termination

The GA continues to iterate and consequently evolve individuals toward more

optimal solutions. In the same fashion as the first generation, fitness scores are

found for each iteration and another generation is built from the prior. The selection

methods and genetic operators work together to cause evolution toward parameters

more optimal for neutrino detection. The loop is terminated when either a preset

number of generations is completed, a set fitness score is found, or the fitness score

has plateaued.

3.3.5 Computation Time

One potential challenge in machine learning and evolutionary algorithms is slow

computation times. This challenge is one GENETIS has continuously been working

toward improving. Since each generation runs many XFdtd and neutrino simulations,

the GENETIS GA has historically had high computation times. In an early version

of the loop used to evolve a symmetric bicone antenna, the total run time was approx-

imately 4 hours per generation for 10 individuals, with AraSim generating 100,000

neutrinos. Computational improvements were made by splitting up AraSim jobs and

running them in parallel; thus, if we were to throw 100,000 neutrinos, we could instead

run 10 super-computing jobs of 10,000 each for one individual. More recent versions

of the GA use 50 individuals with 300,000 neutrinos. However, the computational

improvements allow a generation to complete while only taking a factor of 3 longer,

despite 15 times the number of neutrinos. The additional neutrinos reduce the error
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Figure 3.5: Run time improvements for the current GENETIS software loop. The
improved run is only three times longer, despite simulating 15 times the number of
neutrinos.

on the fitness score, which is related to the number of neutrinos simulated. XFdtd

run time was also sped up by using a virtual desktop interface (VDI) for computation

power versus the original usage of an interactive job. The breakdown of this time can

be seen in Fig. 3.5.

More e↵orts to further improve upon our run time are in progress. Alex Patton

has contributed notably to e↵orts to increase the speed of AraSim calculation. One

project aimed at speeding up our loop involves building a neural network to predict the

fitness score from the geometry based on fitness scores already calculated in previous

generations, which would allow for a decrease in computation time by circumventing

the simulation steps for some individuals. The neural network and initial results are

discussed in more detail in Chapter 3.4.4.
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3.4 Physical Antenna Evolution Algorithm (PAEA)

One of the primary goals of GENETIS is to investigate the evolution of antenna

designs. In this section, I will be discussing the di↵erent investigations apropos phys-

ical antenna evolution. These GAs all involve the integration of XFdtd and AraSim

to obtain the fitness scores. Fig. 3.6 presents a schematic of the GENETIS algorithm.

The results presented in this thesis involve the evolution of a bicone-based antenna.

A bicone antenna consists of two cones with the openings facing opposite directions,

as illustrated in Fig. 3.11. This shape was selected for an initial evolution because it

is the same geometry as antennas currently deployed in the ARA experiment.

In addition to the initial symmetric bicone evolution, there have been multiple

other versions of the physical antenna evolution, each with increasing complexity. The

following are the iterations that will be discussed in this section: (1) The symmetric

bicone antenna, (2) the asymmetric bicone evolution, and (3) the asymmetric bicone

with nonlinear sides.

Figure 3.6: A diagram of the PAEA GA used to evolve antennas. The fitness calcu-
lation steps are shown in blue, and the generation creation steps are in red.
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3.4.1 The Symmetric Bicone Evolution

The symmetric bicone antenna design was the most basic bicone evolution con-

ducted. An notable contributor to this project was Alex Machtay. It is fully defined

by three genes (parameters): the inner radius (r), the length (L), and the opening

angle (✓) as seen in Fig. 3.7. Because this run is symmetric, each of these values is

used to make the top and bottom cones. A single individual in the GA is an antenna

design given by these three parameters.

Figure 3.7: Geometry of bicone antenna showing the genes of length (l), opening
angle theta (✓), and minor radius (r). The separation distance (s) is held constant.

3.4.1.1 The Symmetric Bicone Loop

The Symmetric Bicone Loop follows the procedure described in Chapter 3.3. The

first generation is initialized by selecting values for the three genes for each individual
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from a uniform distribution with a mean at the gene values for the current ARA

designs. The parameters for the initialization can be seen in Tab. 3.1 below.

Table 3.1: Range of of uniform distributions used for each gene.

Gene Minimum Maximum

Length (cm) 37.5 140
Radius (cm) 0.0 7.5
Opening Angle (degrees) 0.0 11.3

Instead of a hard-coded restriction on the diameter, this GA penalizes the fitness

score of individuals with an outer radius larger than the borehole size. As seen below,

the penalty was implemented by making the fitness score a piecewise function, where

Rmax = 7.5 cm.

Fitness Score =

⇢
Ve↵e

�(Rmax�R)2
if R > Rmax

Ve↵ if R  Rmax

If the outer radius were smaller than the radius of the borehole, the fitness score

would be equal to the e↵ective volume produced by AraSim. However, if the outer

radius were larger than the radius of the borehole, then the fitness score would be

penalized by multiplying the e↵ective volume by an exponentially decreasing function,

which would lower the fitness score relative to the amount the radius exceeds the

borehole size. This ensured that potential solutions would become much less dense

in the region of the parameter space where the value for this gene was large.

Once the fitness scores were calculated, the GA selected parents and children in a

two-step process. The first step uses roulette selection, whereby pairs of individuals

are selected as parents. Genes for the children are randomly selected using uniform
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crossover to create two o↵spring. Once genes for the children were selected, they went

through a second step before the evolution continued. The second step improved

genetic diversity by introducing mutations to 60% of the o↵spring generated in the

first step. This was done by modifying the values of each gene by a small perturbation

drawn from a Gaussian distribution.

3.4.1.2 Symmetric Bicone Results

The results presented below utilized 50 individuals over 11 generations, simulating

30k neutrinos per individual. The results of the algorithm are presented in the violin

plot in Fig. 3.8. The width of the line represents the probability density of the

population. The solid red line shows the population’s mean, and the dashed green

line shows the population’s median. This figure illustrates that although the loop

was functioning correctly, the solution was not evolving over generations. There

are a few potential reasons for this occurring. First, the solution could already be

optimized without much room for improvement, as the geometry does not allow for

more diversity than ARA’s design. Second, the GA may not adequate search the

parameter space, as it was not further optimized. A non-optimized GA evolves less

e�ciently, causing the use of excess generations prior to showing improvements.

The GENETIS team consequently decided to improve the GA further in the next

iteration of the loop, the asymmetric bicone, discussed in Chapter 3.4.2 below. Fig. 3.9

shows a 3D model of the top-performing individual, and Tab. 3.2 gives the genes for

that solution. It is important to note that a bug in the fitness score calculations of

the symmetric bicone evolution caused the scores to be inflated. This bug was due

to the polarization not being set correctly in AraSim. While this did not a↵ect the

evolutionary process (as all fitness scores were a↵ected similarly), it does make it
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Figure 3.8: Initial results for the evolution of the symmetric bicone. The current
ARA bicone fitness is shown as the horizontal dotted line. Figure by Alex Machtay.

di�cult to compare the results of this evolution to later iterations. This was resolved

in future GENETIS projects.

Table 3.2: Parameters of the highest scoring individual found in Generation 6.

Parameter Value

L (cm) 38.17
r (cm) 1.56
⇥ (rad) 0.036
Fitness
Score

6.47

Fig. 3.10 illustrates the broad range of antenna designs and the correlation between

gene value and fitness score. In particular, antennas had high scores when they

had radii between 0 and 3 cm, and angles between 0 and 7 degrees. Higher scoring
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Figure 3.9: Model of the best symmetric antenna design.

Figure 3.10: Evolution of the three antenna parameters optimized so far, showing
trends toward preferred features (red being most fit). Note that in order to better
di↵erentiate the individuals, the color was set by the square of the fitness score. Figure
by Alex Machtay.
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antennas tended to have shorter lengths, although this could have been a remnant of

the aforementioned bug.

3.4.2 The Asymmetric Bicone Evolution

In hopes of producing antenna designs with higher fitness scores, the next run

allowed for more diversity in antenna shape by permitting an asymmetric evolution

of the bicone antenna. A notable contributor to this project was Alex Machtay. As

illustrated in Fig. 3.11, the asymmetric bicone antenna consisted of two cones with

the openings facing opposite directions. The asymmetric bicone is fully defined by

six genes: the inner radius(r), the length (L), and the opening angle (✓) for the top

and bottom cones. Again the separation distance (s) remains constant. A single

individual in the GA is an antenna design given by these six parameters.

Figure 3.11: A schematic of an asymmetric bicone antenna. The lengths (L1, L2),
inner radii (r1, r2), opening angles (✓1, ✓2), and separation distance (s) fully define the
geometry. In the results presented here, the separation distance was held constant,
and the other six parameters were varied.
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3.4.2.1 The Asymmetric Bicone Loop

The asymmetric bicone GA is similar to the symmetric bicone, except for mod-

ifications that allowed the evolution of six genes instead of three. Two other main

di↵erences will be described further in this section: (1) the constraints and (2) the

selection methods and genetic operators. Additionally, it is worth noting that the

GA for this run was optimized for its e�ciency to determine the ratios of selection

methods and operators used in the evolutionary process.

For the asymmetric run, a constraint was implemented, which prevented the outer

diameter of the antenna from being larger than the ARA borehole width (both during

initialization and in later generations). If the individual’s genes resulted in an outer

diameter larger than the borehole width, the GA would regenerate genes for that

individual until the requirement was satisfied. This was a more straightforward and

equally e↵ective solution than the penalty function, which was consequently removed.

In our symmetric bicone run, all parents selected to breed were done so using the

roulette method. For the asymmetric case, both roulette and tournament selection

methods were utilized [82]. For each generation, the parents were split up, allowing

some of the parents to be selected through roulette, while the remainder were chosen

through tournament. Then, three genetic operators were used to produce the next

population: reproduction, complete mutation (immigration), and uniform crossover.

For each new generation, 80% of parents were selected using roulette, and 20% were

selected using a tournament with 10 individuals. The new population was generated

using 72% crossover, 22% complete mutation, and 6% reproduction.

The proportions for the selection methods and genetic operators were found

through an optimization analysis. Di↵erent combinations of selection methods and
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genetic operators were tested through an exercise where an asymmetric bicone with

six parameters is evolved to a predetermined geometry. For this optimization anal-

ysis, a simplified GA was used, and the best fitness scores were determined after a

set number of generations. The tests were repeated to obtain an absolute maximum

fitness score (highest of all runs) and an average maximum from all runs. The results

of this study can be seen in Fig. 3.12.

Figure 3.12: Optimization of the asymmetric bicone GA. The horizontal axis gives
various combinations of GA parameters. The test was ran multiple times with each
setting. The vertical axis gives the maximum fitness score obtained. The optimal
ratio for selection was found to be 80% percent roulette, 20% tournament. The opti-
mal ration of genetic operators was 72% crossover, 22% mutation, 6% reproduction.
Figure by Ryan Debolt.

3.4.2.2 Asymmetric Bicone Results

The results presented below utilized 50 individuals over 31 generations, with

300,000 simulated neutrinos. The algorithm results are presented in the violin plot

in Fig. 3.13, showing clear evolution toward improved solutions. The highest scoring

antenna had a fitness score of 5.2 ± 0.1 km3 sr, 22% higher than the current ARA de-

tector. For each generation, the vertical lines illustrate the range from best and worst
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fitness scores. The width of the line represents the probability density of the popu-

lation. The mean of the population is shown by the solid red line, and the median is

shown by the dashed green line. Since the complete mutation (immigration) operator

continually introduces new individuals with diverse genes, lower-scoring individuals

remain present in later generations, which can help to prevent early convergence to

local maxima.

Figure 3.13: Initial results for the evolution of the asymmetric bicone. The current
ARA bicone fitness is shown as the horizontal dotted line. Figure by Alex Machtay.

Fig. 3.14 shows the evolution of each parameter over the entire run. Each line

represents a single individual, and the color illustrates the fitness of the individual.

This demonstrates the e↵ectiveness of the GA at producing higher scoring individuals

in later generations. This figure also shows general trends in each parameter and its
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impact on the fitness score. For example, most high scoring antennas share similar

values with opening angles of the top cone (Angle 1) being under 1 degree, the length

of the bottom cone (Length 2) being less than 50 cm, and the angle of the bottom

cone (Angle 2) being between 4 and 6 degrees for high scoring antennas. However,

the other parameters have a larger spread in viable values, with the radius of the top

cone (Radius 1) spread across the entire parameter space for high-scoring individuals.

Figure 3.14: Evolution of the six antenna parameters for the asymmetric bicone,
showing trends toward preferred features (red being most fit). Note the color is
proportional to the fitness score. Figure by Alex Machtay.
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Fig. 3.15 shows a 3D model of the top antenna. Notice that the top section of

each antenna is longer than the bottom, has a larger inner radius, and has a smaller

opening angle.

Figure 3.15: Model of the best antenna design from the asymmetric evolution. Indi-
vidual 8, evolved in Generation 23.

3.4.2.3 Antenna Design Details

Antenna design involves more than just the physical shape of the antenna and

includes the power source, circuit, and wiring to the antenna. These elements have

the ability to inhibit the performance of the antenna and must therefore be considered

in the design. Thus far, the GENETIS group has not included these elements in their

analysis and will be adding these elements in the future. This section provides a brief

introduction to these elements, as well as the current e↵ect of this on the asymmetric

bicone results.
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There are multiple relevant power quantities in antenna design. The source power,

Psource, is the power directly coming from the source. Other common names for

the source power include the incident power, start power, or available power. The

accepted power, Pacc, refers to the power that reaches the antenna after any reflection

losses. The accepted power is also referred to as the input power. Finally, the Prad is

the radiated power and refers to the power that leaves the antenna via EM radiation.

U(✓,�) is the radiation intensity as a function of direction. These powers are related

through the following equations.

Pacc = Psource (1� S
2
11) (3.2)

where S11 is the reflection coe�cient, also given by �.

Prad = Pacc ⌘ (3.3)

where ⌘ is the radiation e�ciency.

These terms lead to the two related definitions of gain. First, gain, or absolute

gain is defined as the ratio of the radiation intensity, U(✓,�), to the radiation intensity

produced in a given direction if the power accepted by the antenna was isotropically

radiated (Pacc
4⇡ ). Typically the peak gain is reported as a single value from the direction

of maximum radiation but could be at other directions.

G =
4⇡ U(✓,�)

Pacc
(3.4)

The realized gain, Gre is the gain reduced by any mismatched losses:

Gre =
4⇡ U(✓,�) (1� �2)

Pacc
(3.5)
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which is equivalent to

Gre =
4⇡ U(✓,�)

Psource
(3.6)

The realized gain is smaller than the gain because it includes mismatch losses (or

equivalently because Psource is larger than Pacc).

The design of the cabling and circuits between the power source and the antenna

is an important element in maximizing the realized gain by minimizing the input port

coe�cient, S11 or �in. The input port reflection coe�cient refers to the fraction of

the reflected voltage to the input voltage, with losses due to an impedance mismatch

between the antenna and the circuit or cable. Impedance, Z, is the opposition a circuit

(or circuit element) has to an AC current. It is composed of the resistance, R, which

is e↵ectively the DC current equivalent, and the reactance. Reactance, X, is caused

by the changing EM fields in an AC current and is composed of an inductance and a

capacitance component. Impedance is expressed as a complex value, Z = R + jX.

If the antenna impedance (or any load), ZL, does not equal the circuit (character-

istic) impedance, Z0, some signal is reflected toward the source. Therefore it is often

desirable to create a matching circuit that changes the antenna impedance to equal

the characteristic impedance, which results in no reflection. If the load impedance and

characteristic impedance are complex conjugates, it results in the maximum power

transfer. The characteristic impedance is often given as 50⌦. This default is the

standard value in coaxial cables and is a compromise between the experimentally

tested maximum power transfer (30⌦) and the maximum attenuation (77⌦). It is

also a practical value that is easy to design coaxial cables to match. For this reason,

this standard of 50⌦ was used as the characteristic impedance in further analysis.
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The definition of S11 is defined as the reflected voltage, VR, divided by the input

voltage, VI.

S11 =
VR

VI
=

ZL � Z0

ZL + Z0
(3.7)

If S11 = 0, then there is no reflected wave, and there is a perfect match of

impedance. This occurs if the characteristic impedance and the load impedance

are equal. If the S11 = 1, all of the signal is reflected toward the source. Since VI

is always greater than or equal to VR, S11 always falls between 0 and 1, although it

is often reported in dB. As the impedance varies over frequency, the S11 is similarly

a↵ected. Consequently, the bandwidth of an antenna is often defined as the range of

frequencies where the S11 is below a predefined value.

Figure 3.16: Comparison between the absolute gain and the realized gain at 200 MHz
of the best evolved asymmetric antenna. Figure by Alex Machtay.

75



The reflected wave interferes with the input wave producing a standing wave.

As the constant input and reflected waves move in opposite directions, they will

interfere di↵erently as they progress, resulting in the magnitude of the standing wave

changing over time. The Voltage Standing Wave Ratio (VSWR) is the ratio of the

peak amplitude of the standing wave to the minimum amplitude of the standing wave.

It is related to S11 by the following equation.

VSWR =
1 + |S11|
1� |S11|

(3.8)

Since the GENETIS algorithm is built using the gain and not the realized gain,

we investigated the di↵erence between the two. As expected, the realized gain was

smaller than the absolute gain at 200 MHz, as shown in Fig. 3.16. While the shape

of the radiation pattern is similar, the realized gain has a smaller magnitude at all

angles.

As a function of frequency, the di↵erence between the absolute gain and the re-

alized gain, averaged over all angles, is given in the left panel of Fig. 3.17, which

illustrates the wide range of di↵erences. The right panel shows the corresponding S11

plot. Fig. 3.17 shows the same pattern in both the plot showing the di↵erence in gain

and the S11 plot.

In order to match the impedance of the antenna with the circuit, it is necessary

to utilize a Smith chart and a network analyzer (although software can complete the

calculations now). Single-frequency impedance matching circuits can be constructed

with either one capacitor or inductor in parallel and a capacitor or inductor in series

with the load. Typically, one of each is used, although it is possible to use the same

component in each position.
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Figure 3.17: (Left) Comparison between the absolute peak gain and the peak realized
gain for a range of frequencies of the best evolved asymmetric antenna. (Right) The
S11 vs frequency for the asymmetric evolved antenna. Figure by Alex Machtay.

The Smith chart is a polar grid showing the impedance and admittance grids. A

full Smith chart is provided in Appendix D [89]. The impedance is shown in red,

and the admittance is shown in blue. Smith charts are often scaled to be normalized

to the characteristic impedance. When plotting an impedance value, the red circles

give the resistance component (real), while curved arcs from the right point are the

reactance (imaginary) components. Conversely, the blue circles give the conductance

(real), and the curved arcs from the left point give the susceptance.

The basic procedure is as follows. First, one connects the load (antenna in this

case) to the network analyzer, which plots the location on a Smith chart and reads

out the impedance (alternatively, the impedance can be found through simulation).

Adding a capacitor/inductor in series moves the impedance counterclockwise/clock-

wise along the circles of the Smith chart. Similarly, adding a capacitor/inductor

in parallel moves the impedance clockwise/counterclockwise along the circles of the

Smith chart. Inductors always move the point upward on the chart, while capaci-

tors move it downward. Combining two components makes it possible to move the
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impedance to the characteristic impedance, thus matching the circuits. The distance

traveled can be used to calculate the values of the capacitor/inductor. However, since

impedance is related to frequency, it is typically not realistic to manually match the

impedance for all frequencies. In practice, a broadband matching circuit with poten-

tially many components could improve the gain across a wide range of frequencies.

Such a circuit could be designed and optimized using various electrical engineering

software.

For illustrative purposes, consider the asymmetric evolved antenna discussed above.

At a frequency of 300MHz, XFdtd gives an impedance of ZL = 311� 197j, normal-

ized to 50Ohms, this is ZL = 6.2 � 3.9j. This can be plotted on the Smith chart

below, as ZL. To move the point to the center, we can rotate counterclockwise upward

with a parallel inductor to the 1.0 reactance circle at point A. Then rotate counter-

clockwise downward with a series capacitor to the center point, Z0, representing the

characteristic impedance.

Starting with the inductor, the distance to 50Ohm reactance circle is found by

reading o↵ of the blue susceptance lines to be 0.41, (0.08 below horizontal axis and 0.33

above). After multiplying the reciprocal by 50Ohms, we can calculate the required

inductor.

50 ⌦

0.41
= 122 ⌦

122 ⌦

2⇡ 300MHz
= 66.3 nH (3.9)
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Figure 3.18: Subset of a Smith chart showing impedance matching at 300 MHz for
the asymmetric bicone antenna. ZL is the impedance of the antenna and Z0 is the
characteristics impedance of 50 Ohms. The green line shows the path taken after
applying a 66.3 nH parallel inductor to point A. The magenta line shows the path
from applying a series 3.9 pF capacitor to match the impedance. A full Smith chart
can be found in Appendix D. Adapted from [89].

For the capacitor, the distance along the 50Ohm reactance circle to the center

point is 2.7. Again after removing the normalization, we can calculate the required

capacitor.
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50 ⌦⇥ 2.7 = 135 ⌦

1

2⇡ 300 MHz⇥ 135 ⌦
= 3.9 pF (3.10)

This manual result closely matches that of a software calculation, which finds

an inductor of 67.8 nH and a capacitor of 3.8 pF. While a number of online tools

are available for simple circuit matching, this site was used for this calculation. A

diagram of the circuit is given in Fig. 3.19.

Figure 3.19: Circuit designed to match the evolved asymmetric antenna at 200 MHz.
The source is connected in series to a 3.8 pF capacitor and then a 67.8 nH parallel
inductor before connecting the antenna.

3.4.2.4 Verification of Results

In order to explore these results further, the GENETIS team explored two dif-

ferent aspects of our produced solutions. Ben Sipe contributed meaningfully to this

investigation. First, we looked at how small changes an individual’s genes altered

the antenna response pattern and resulting fitness score. Second, we investigated
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some of the physics concepts behind the results to enhance our understanding of the

performance.

To explore how small changes in the genes changed the performance of a solution,

we made minor perturbations to the genes of a previous antenna and then passed

those new solutions through the XFdtd simulation and AraSim run, producing new

gain patterns and fitness scores. This investigation was performed using the individual

with the highest fitness score from the asymmetric bicone run. Permutations were

applied both to the length and opening angle of each cone. The genes of the highest

performing individual can be seen in Tab. 3.3.

Table 3.3: Parameters of the highest scoring individual.

Gene Value

L1 (cm) 89.92
r1 (cm) 2.087
⇥1 (rad) 0.016
L2 (cm) 45.36
r2 (cm) 0.30
⇥2 (rad) 0.091

The length was altered by adding and subtracting 2.8 cm (chosen because it is

one tenth of the shortest wavelength); there are 8 permutations for this modification.

In order to modify the opening angle, the inner radius was changed by adding and

subtracting 2.81 cm; similarly, there are 8 permutations for this modification. The

new genes for each altered individual can be seen in Tab. 3.4 and Tab. 3.5. The

di↵erences in the antenna response patterns for each newly created individual at

multiple frequencies can be seen in Fig. 3.20 and Fig. 3.21. This study confirms
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that small alterations in the genes of an individual gives expected di↵erences on the

antenna response pattern and fitness score.

Table 3.4: Length Values Tested for 8 Individuals (cm)

ID 119 120 121 122 123 124 125 126
l1 92.92 89.92 86.92 89.92 92.92 92.92 86.92 86.92
l2 45.36 48.36 45.36 42.36 48.36 42.36 48.36 42.36

Table 3.5: Angle Values Tested for 8 Individuals (radians)

ID 165 166 167 168 169 170 171 172
✓1 0.0474 0.0162 -0.0151 0.0162 0.0474 0.0474 -0.0151 -0.0151
✓2 0.0910 0.1521 0.0910 0.0293 0.0293 0.0293 0.1521 0.0293

For our second investigation, we conducted an exploration using AraSim compar-

ing the best asymmetric bicone and the ARA bicone. The purpose of this investigation

is to identify the reason why the best individual might be performing better. In this

analysis, an angle of 0 is vertical downward, ⇡/2 (90�) is horizontal, ⇡ (180�) is vertical

up. Fig. 3.22 shows a comparison of the RF arrival angles for the simulated neutrinos

detected by each antenna. The RF arrival angle ranges from 0 to 2.5 radians (0� –

143�), with the majority occurring between 1 and ⇡/2 radians (57� – 90�). At angles

larger than ⇡/2 radians, the number of detected neutrinos quickly decrease, which

is expected as at the energies ARA is probing, neutrinos cannot pass through the

earth. Fig. 3.22 also illustrates that the GA antenna detects more events, confirming

the larger fitness score, and the detected neutrinos tend to come from slightly smaller
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Figure 3.20: Di↵erence in gain patterns for antenna models of similar shape and
slightly di↵ering length genes. Figure by Alex Machtay.
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Figure 3.21: Di↵erence in gain patterns for antenna models of similar shape and
slightly di↵ering angle genes. Figure by Alex Machtay.
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angles. The most significant increase in sensitivity between the antennas is at the

evolved antenna’s peak angle at approximately 1.25 radians (71.6�). This peak occurs

at a zenith angle that is about 0.25 radians (14.3�) smaller than the peak zenith angle

for the ARA bicone. Further, at angles greater than ⇡/2 radians (90�), the evolved

bicone is equal to or slightly less sensitive. This shift in distribution could be due to

the shape of the evolved bottom bicone, causing smaller arrival angles to be closer to

perpendicular with the sides of the bicone.

Figure 3.22: Comparison of the RF arrival angle of the best evolved asymmetric
bicone antenna and the ARA bicone. Figure by Ben Sipe.

The angular reconstruction comparison shown in Fig. 3.23 shows very similar

results for each antenna, besides the gradual increase in the cumulative count for

the evolved antenna. This demonstrates that both antennas detect RF signals from

di↵erent directions equally.
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Figure 3.23: Comparison of the reconstructed neutrino angles of the best evolved
asymmetric bicone antenna and the ARA bicone. Figure by Ben Sipe.

Finally, Fig. 3.24 shows the energy distributions for each antenna. The plot indi-

cates that the results are independent of shower energy, with both antennas detecting

events at a relatively flat rate before a peak at the highest energy. One point of inter-

est is that only the ARA bicone detected neutrinos in the lowest energy bins although

it is not clear if this is significant. This could be related to the results of Fig. 3.23,

lower energy neutrinos are more likely to travel farther through the ice/earth, so if

the ARA bicone is more sensitive at those energy ranges, it will see more neutri-

nos at arrival angles larger than ⇡/2, although the distributions are not significantly

di↵erent.

3.4.3 The Nonlinear Asymmetric Bicone

The GENETIS GA was expanded to evolve bicone designs with nonlinear sides

to further explore more complex and diverse solutions. Eliot Ferstl, Leo Deer, and

Ryan Debolt were notable contributors to this investigation. To define this geometry,
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Figure 3.24: Comparison of the shower energy of the best evolved asymmetric bicone
antenna and the ARA bicone. Figure by Ben Sipe.

the GA describes the shape of the surface of the bicone using a polynomial. Genes

are given by the inner radius (r), the length (L), with the coe�cients of a polynomial

that describes the sides, as seen in Fig. 3.25.

In the symmetric and asymmetric linear bicones, each cone could be described

by the equation R(z) = r + z tan ✓, where R is the radius at a particular value of

z (the height) that terminates at z = L. The tangent of ✓ is the constant slope in

the equation. The final shape of the single cone could be described by rotating the

equation about the horizontal axis.

The nonlinear bicone aims to find more diverse solutions by allowing this equation

to form a polynomial R(z) = az
2 + bz + r. In this case, the genes that define an

individual are r, L, a, and b. Note that this method is flexible for higher-order

polynomials, which will be the focus of future investigations.
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Figure 3.25: A schematic of an asymmetric, nonlinear bicone antenna. The lengths
(L1, L2), inner radii (r1, r2), quadratic coe�cients (a1, a2), linear coe�cients (b1,
b2), and separation distance (s) fully define the geometry. In the results presented
here, the separation distance was held constant, and the other eight parameters were
varied.

3.4.3.1 The Nonlinear Bicone Loop

We have completed two main evolutions for the nonlinear bicone: (1) an evolution

evolving genes to the first order, and (2) an evolution evolving genes up to the second

order. The first order run was a test to show that we could evolve using the coe�-

cients of a polynomial as genes that describe our linear bicone instead of using the

length, radius, and theta values. For these runs, we evolve using 50 individuals per

generation and run simulations with 300,000 neutrinos. A new operator, called elite,

was introduced for the nonlinear bicone that selects the highest-scoring individual and
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copies it to the next generation. This ensures that the best high-scoring individuals

are not stochastically removed during the loop. The remainder of the next generation

is created using the same selection methods and operators as the asymmetric linear

bicone described in Chapter 3.4.2. While the ability to use rank selection was added

to the GA, it has yet to be used in a run. It is important to note that the ratio of each

of selection methods and operators used has not yet been optimized for the nonlinear

bicone evolution; this is intended for an upcoming investigation.

The introduction of nonlinear sides necessitates additional constraints. Previously,

the antenna was restricted from having an outer diameter that exceeds the current

ARA borehole. For the nonlinear sides investigation, the antenna has the potential

to be larger than the borehole at any point along the length, not just at the outer

diameter. The individuals are constrained by looking at the maximum width; if

that width is greater than the borehole, the individual’s genes are regenerated before

moving on. To do so, our algorithm treats the edges as a polynomial and finds the

maximum value. Furthermore, the equation could cross over the horizontal axis and

self-intersect. The GA prevents this by regenerating individuals that have a width of

zero at any point. The individual creation steps had to be modified to account for

these constraints and prevent generating non-valid.

3.4.3.2 First Order Results

As an initial test, we took the nonlinear bicone and evolved its genes using first-

order parameters. This first-order test is equivalent to the linear asymmetric bicone

test and was constructed as a means to test the software’s ability to evolve using the

coe�cients of a polynomial as genes. Results for this study can be seen in Fig. 3.26.
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Figure 3.26: Initial results for the evolution of the first order nonlinear bicone. The
current ARA bicone fitness is shown as the horizontal dotted line. Figure by Alex
Machtay.

Evolution of the genes can be seen in Fig. 3.27. CAD models of the best performing

individuals can be seen in Fig. 3.28.

It is worth noting that this run was conducted for 10 generations, whereas the

asymmetric bicone evolved up to 30 generations. Since this was intended to be a

test using the coe�cients of a polynomial and because evolving takes up substan-

tial computation time, this run was only extended into generation 10. Additionally

worth noting, the fitness score plots in Fig. 3.26 show slower growth than that of

the asymmetric bicone over the first 10 generations. A contribution to this may be

due to non-optimized GA parameters for this run, though other sources of error are

currently being explored.
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Figure 3.27: Evolution of the antenna parameters with the linear term converted
to radius for easy comparison to the asymmetric bicone evolution, showing trends
toward preferred features (red being most fit). Figure by Alex Machtay.

3.4.3.3 Second Order Results

The second-order run is our first attempt at adding more variability to the asym-

metric bicone design. This is an early presentation of this investigation and as of

this writing, the evolution is currently running and our GA operators and selection

methods have not yet been optimized. Results for this study thus far can be seen in

Fig. 3.29. Evolution of the genes can be seen in the top panel of Fig. 3.30. CAD mod-

els of the best-performing individuals can be seen in the bottom panel Fig. 3.30. Since

this evolution is currently still in progress, the results from this section are merely
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Figure 3.28: CAD models of the best individuals from the first order non-linear bicone
evolution. Note the similarity in design to the asymmetric bicone, with a longer top
cone and a wider bottom opening angle.

preliminary, with more soon to come. This GA includes any first-order solutions, as

the algorithm allows the quadratic coe�cient to go to zero.

3.4.4 Future Work

Future work for PAEA includes optimizing the GA for the second-order run, and

adding more complexity (orders) onto the possible antenna geometry. The GA will

have to be re-optimized for the current run parameters for each order we add on.

Furthermore, we have identified that the uncertainty in fitness scores is too large,

and we are working to reduce it, which will improve the evolution. Additionally, the
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Figure 3.29: Initial results for the evolution of the second order nonlinear bicone. The
current ARA bicone fitness is shown as the horizontal dotted line. Figure by Alex
Machtay.

PAEA project has begun setting up a new software loop to optimize other types of

antennas, such as the horn antennas used by ANITA. We have begun integration of

the ANITA antenna simulation software, IceMC [50], as well as modifying the genes

and XFdtd to produce horn antenna geometry.

We will also be adding intricacies in design required for printing and testing,

such as adding coaxial cables and impedance matching circuits to the GA. Addition-

ally, the GENETIS group will be 3D printing antenna prototypes through additive

manufacturing at The Ohio State University Center for Design and Manufacturing

Excellence. Anechoic chamber testing will be conducted to measure the printed an-

tenna response. If sensitivities are improved by more than a factor of 2 over the ARA

bicone, the antennas will be deployed in-ice for further testing.
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Figure 3.30: Top panel: Evolution of the antenna parameters radius, length, linear
coe�cient, and quadratic coe�cient for each cone, showing trends toward preferred
features (red being most fit). Bottom panel: CAD models of the best individuals
from the second order non-linear bicone evolution. Figure by Alex Machtay.
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Another exploration for GENETIS, which is currently in progress, is using a neu-

ral network (NN) to reduce AraSim computation times. The NN recently developed

at OSU, with Ben Sipe as a notable contributor, is intended to supplement AraSim,

ideally sending some of the individuals from a generation through AraSim itself and

the rest being sent through our NN to predict their fitness score based on past AraSim

calculations and bypass the computationally heavy simulations. Some of the individ-

uals tested with AraSim will join the training data to continue to train the NN as

the evolution progresses.

Figure 3.31: Evolution of 31 generations and 50 individuals using only the NN trained
on past fitness scores calculated using XF and AraSim and the GA; XFdtd and
AraSim was not used. Figure by Ben Sipe.

In order to test this NN, we have previously trained it on the genes and cor-

responding fitness scores from a past run, particularly the asymmetric bicone run

discussed in Chapter 3.4.2, to make predictions of the fitness score based on the
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genes. The NN was trained on 85% of the data and then tested on the remaining

15%. This NN utilizes 5-fold cross-validation so that it is both trained and tested on

all individuals. For this asymmetric bicone run, there were a total of 32 generations

that the NN trained on, each having 50 individuals. All of this information, including

the hyper-parameters, are subject to change as we optimize the NN. For the run seen

in Fig. 3.31 and Fig. 3.32, the mean actual error was 0.1 km3/sr, which means that

on average, the NN would give a fitness score 0.1 km3/sr away from the actual fitness

score. This result showed the ability to predict fitness scores using a NN; it was not

expected to improve upon the prior result, because the NN had a static training set.

The static training set resulted in a cap to the maximum fitness score, which is seen

in Fig. 3.32 as a cuto↵ around 5 km3/sr.

3.5 Antenna Response Evolution Algorithm (AREA)

The subsequent GENETIS investigation involves the evolution of antenna radia-

tion patterns to explore: (1) the optimal neutrino sensitivity attainable and (2) the

potential for optimizing a directional beam pattern. The purpose of this project is to

explore what improvement to the neutrino sensitivity is possible due to improvements

in antenna responses alone, without regard to what physical design might be needed

to bring about that response In this section, I will be discussing the work conducted

by our previous collaborators at California Polytechnic State University, San Luis

Obispo, as well as the continuation of this work at The Ohio State University.

3.5.1 AREA Loop

The loop software for AREA utilizes all of the same software elements as PAEA,

except it no longer includes the involvement of XFdtd; since we are now producing the
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Figure 3.32: Initial results for the evolution of the asymmetric bicone using a NN
instead of AraSim to produce the fitness score (e↵ective volume). The fitness score for
the current ARA bicone fitness is shown as the horizontal dotted line. The apparent
cuto↵ is due to a lack of individuals with higher fitness scores for the NN to train on.
Figure by Ben Sipe.

antenna gain patterns as our solutions, they no longer need to be simulated and our

individuals and their genes are now parameters that describe the antenna response

pattern itself. This is accomplished by evolving 13 azimuthally symmetric spherical

harmonic functions as genes of each individual to give the equation below.

G(✓,~a) ⇡ 2
p
⇡Y

0
0 (✓) + a1Y

0
1 (✓) + ...a12Y

0
12 (3.11)

A diagram of the software for the AREA loop can be seen in 3.33.

Past runs for this project have been done using 50 individuals, throwing 10,000

neutrinos. All individuals are constrained to enforce the conservation of energy on
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Figure 3.33: A diagram of the AREA software loop used to evolve antenna response
patterns, which follows the same structure as the PAEA loop, but without XFdtd
simulations.

radiation patterns. New generations were built with the following selection methods

and genetic operators.

• One half of new individuals are made by roulette selection of two parents then

continuous crossover

• One sixth of new individuals are made by roulette selection of one parent then

a Gaussian mutation

• One sixth of new individuals are made by 6-way tournament selection of two

parents then continuous crossover

• One sixth of new individuals are made by 6-way tournament selection of one

parent then Gaussian mutation

In the runs completed by Cal Poly [63], which are discussed later in this section,

they constructed two simplified versions of AraSim to be tested, called AraSimLite

and AraSimLite2. These were constructed to cut down the run time in these earlier
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stages, as AraSim required approximately 30-45minutes per radiation pattern to run

on the Cal Poly machines per 10,000 neutrinos. AraSim’s slow computation time

meant multi-day simulations in order to execute multiple generations. AraSimLite,

however, takes approximately 0.3 seconds for the same simulation. Computational

specs between each Monte Carlo simulation version can be seen in Fig. 3.34.

Figure 3.34: Computational specifications between AraSim, AraSimLite, AraSim-
Lite2. The red squares indicate the included computations, whereas white boxes
indicate that those computations are excluded. Table from [63].
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AraSimLite simplifies the fitness assignment by omitting the software’s ray-tracing,

noise waveforms, signal polarization, ice modeling, and uses a neutrino energy of 1018

eV. It simulates the neutrino-nucleon interaction cross-sections and samples potential

interaction points in the ice [63]. Then, it randomly distributes neutrino directions

over 4⇡ str and generates corresponding weights and particle trajectories. By omitting

the more intricate details of AraSim, AraSimLite is able to simulate 10,000 neutrinos

6000 times faster. However, these details are crucial for a complete understanding of

an optimized gain pattern. Consequently, AraSimLite is an intermediate step that

will eventually be replaced with the full AraSim.

AraSimLite creates the fitness score in two main steps. First, the number of

neutrinos desired are simulated, resulting in a location and weight for all of them.

The location is the coordinates of the event interaction relative to the detector. The

weight is the probability that the neutrino event occurs based on the probability of

the interaction occurring and the neutrino being absorbed. In the next phase, the

radiation pattern is used in conjunction with an array of locations and weights to

calculate the fitness score. The fitness score is given by the function:

Fitness Score =
NX

i=1

(
wi, if g(✓i)

R2
i

> rth
0, otherwise

Where w is the weight, R and ✓ is the event location in polar coordinates, g is the

antenna gain, and rth is a threshold value set by the minimum detectable signal by

the ARA electronics. The value for rth in this analysis was 150 1
m2 .

AraSimLite2 begins to introduce more complexity by adding the neutrino trajec-

tory and Cherenkov cone into the simulation. There is an added constraint that the

viewing angle is between 56.3� and 57.3�. The viewing angle is defined as the angle
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between the neutrino trajectory and the vector between the detector and the event.

This accounts for the angle of the Cherenkov cone of 56.8� and a one degree viewing

angle of the detector. This additional angle restriction heavily reduces the number

of detected events and thus increases computation time significantly. As a result,

approximately 0.7% of generated events pass the new criteria. The fitness score of

the AraSimLite2 analysis is given below. It is also worth noting that both AraSim-

Lite and AraSimLite2 run independent of frequency, whereas AraSim utilizes gain

patterns at 60 di↵erent frequency steps between 83.33MHz and 1.066GHz. Thus, we

are only looking at one gain pattern assumed at one frequency with AraSimLite and

AraSimLite2.

Fitness Score =
NX

i=1

(
wi, if g(✓i)

R2
i

> rth and 56.3� < ✓view < 57.3�

0, otherwise

3.5.2 Preliminary Test Cases

This section will very briefly go over some of the proof-of-concept runs conducted

at Cal Poly. As a preliminary study, two tests were conducted: (1) the ability for the

GA to evolve omnidirectional radiation patterns, and (2) the ability to evolve a di-

rectional radiation pattern. The GA utilized the same specs as mentioned previously;

however, the fitness function was modified to motivate the evolutions accordingly. In

the first case, the fitness was maximized by a radiation pattern that had no directivity.

Being equal in all angles, this pattern should form a circle. The test evolution was

successful, achieving a fitness score 99% of the perfect solution. Final results can be

seen in Fig. 3.35. In the second case, the fitness function maximized the gain toward

90� and 270�, forming a rectangular radiation pattern. The evolved solutions tended
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toward the desired result but failed to match closely due to the limited number of

spherical harmonics. Full results can be seen in Fig. 3.36.

Figure 3.35: Evolution results (left) of the omnidirectional beam pattern run and
radiation pattern of the fittest individual (right) [63].

3.5.3 Antenna Response Optimization with AraSimLite

Fig. 3.37 shows the individual with the highest fitness score from all runs using

AraSimLite. This individual evolved 500 generations, and has a maximum gain of

5.42 dBi at 133 degrees and a fitness score of 27,120. Genes for the highest-scoring

individual can be seen in Tab. 3.6. A population size of 50 individuals and 10,000

neutrinos were used.

3.5.3.1 AraSimLite2 Results

Fig. 3.38 shows the individual with the highest fitness score from all runs us-

ing AraSimLite2. This individual evolved 500 generations, has a maximum gain of
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Figure 3.36: Evolution results (left) of the directional beam pattern run and radiation
pattern of the fittest individual (right) [63].

Figure 3.37: Summary of the full evolution (left) and most fit individual from that
evolution using AraSimLite (right) [63].
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Table 3.6: Genes from the most fit solution in the AraSimLite run.

x1 x2 x3 x4 x5 x6

-2.291 -0.287 1.265 -0.210 0.019 -0.497

x7 x8 x9 x10 x11 x12

-0.265 1.556 -1.141 -0.087 1.077 -0.487

3.82 dBi at 116 degrees, and a fitness score of 150.5. Genes for the highest-scoring

individual can be seen in Tab. 3.7.

Figure 3.38: Summary of the full evolution (left) and most fit individual from that
evolution using AraSimLite2 (right) [63].

3.5.3.2 Result Discussion

The current AREA results show promising evolution and improvement in the

fitness function. However, the highest-scoring gain patterns failed to perform well in

a full AraSim simulation. Comparing the best evolved individual gain pattern to the
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Table 3.7: Genes from the most fit solution in the AraSimLite2 run.

x1 x2 x3 x4 x5 x6

-1.211 -1.327 1.810 0.456 -1.043 0.308

x7 x8 x9 x10 x11 x12

0.108 0.111 0.071 -0.332 -0.030 0.476

gain pattern of the ARA bicone antenna, the evolved pattern had a fitness score 40%

higher in AraSimLite2, but 20% lower when running AraSim. Unfortunately, this

suggests that the simplifications used in AraSimLite2 were too drastic to be used to

evolve an accurate gain pattern.

Full implementation of AREA with AraSim should allow the loop to accurately

produce a gain pattern that is optimized and can exceed the fitness of the ARA bicone.

The GENETIS team is actively pursuing this project, and preliminary results will be

discussed in the next section.

3.5.4 Antenna Response Optimization with AraSim

Investigations at The Ohio State University, with notable contributions by Ethan

Fahimi, include (1) a test run of the GA with full AraSim, and (2) a test evolution of

isolated frequencies. These runs utilize the same GA as described in Chapter 3.5.1.

The test run of the GA with full AraSim was a trial run to ensure that the full

AraSim software would run, without error, in the AREA software loop. Trial runs

had evolution specs set to 50 individuals, 10,000 neutrinos, and ran for 36 generations.

Results of this run can be seen in Fig. 3.39. These results show poor evolution, as

AraSimLite versions were frequency independent. Since the Full AraSim is frequency

dependent and requires 60 di↵erent antenna response patterns at varying frequencies,
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this evolution generated all 60 frequencies for each of the 50 individuals and evolved

them independently of each other. Thus, each individual had 60 disunited frequencies

that were all run in the same AraSim job, which gave very low fitness scores that

were unable to improve through each evolution. Nonetheless, this test showed that

the integration of AraSim into the AREA software was successful.

Figure 3.39: Summary of the test AREA run with full AraSim. Figure by Ethan
Fahimi.

The next goal with AREA is to achieve meaningful runs with full AraSim. Be-

cause of the di�culty in implementing a range of frequencies into an evolution, we

are beginning by isolating our evolution to use the same beam pattern across all fre-

quencies; this means we need to modify the GA outputs to trick AraSim into thinking

it has the proper input file for all 60 frequency steps by duplicating the same beam

pattern for all of the AraSim inputs. This investigation is currently in progress, and

we expect results shortly.
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3.5.5 Future AREA Work

Future goals for AREA include expanding the number of correlated frequencies we

can include after we have completed a single-frequency evolution. Additionally, this

GA has not yet been optimized. More diversity in selection methods and operators can

be explored before optimization of the AREA GA. Further, once AREA successfully

optimizes the antenna response for the ARA project neutrino detection, we can merge

AREA and PAEA by using the optimized AREA gain patterns as a measure of fitness

when evolving to optimized antenna designs and find out whether it improves on the

results using AraSim to generate fitness scores in the main loop.

3.6 Conclusion

This chapter contains the results for all of the main GENETIS projects since the

group’s founding (and my involvement). GENETIS is pioneering the use of GAs to

design experiments by using a physics outcome as a measure of fitness and laying

the foundation for future detector optimizations. The GENETIS collaboration is

currently working on a number of improvements to the loop that could continue to

improve the computational e�ciency, convergence speed, and maximum fitness. First,

we are introducing more complex antenna geometries, such as bicones with nonlinear

sides. Initial testing of the GA using bicones with nonlinear sides is underway, and the

evolution of other types of antennas is also in development. We are also exploring the

use of additional and more advanced selection methods and genetic operators. In the

future, the GENETIS project will expand beyond antenna design and explore other

aspects of experimental design and analysis, including detector layouts, trigger, and

bandpass filter optimization. The GENETIS project will also expand to utilize other
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types of computational intelligence techniques in other experimental applications, as

well as expand to optimizing antennas for other neutrino radio experiments such as

ANITA and PUEO.

The successful deployment of GA-designed detectors could pave the way for ad-

ditional applications of computational intelligence for the design of scientific instru-

ments. Expanded research in this area will streamline the optimization of the design

of many types of experiments across fields for superior science outcomes.
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Chapter 4: ARA Event Classification with Genetic

Programming

4.1 Introduction

Many UHE neutrino experiments involve collecting a large amount of data and

then searching that data for events of interest. Background is often eliminated in a

series of cuts until only events of interest remain, or a flux limit is determined if no

events are found. GP is one potential way to handle the discrimination between, or

separation of events from background. This chapter will discuss my e↵orts to use

GP to classify background and neutrino signals in the ARA collaboration data. As

ARA has yet to detect a neutrino, it is necessary to simulate waveforms in AraSim

and inject them into a background data set. At the outset, the goal of this analysis

was to achieve at least a background rejection, or true negative rate (TNR), of 99.9%

with an AraSim event acceptance rate, or true positive rate (TPR), of 90%.

I will first introduce a brief literature review of GPs used in data classification

and then define some important terminology used in classification algorithms. The

introduction will also further describe the acquisition and structure of ARA data.

The following section will describe Karoo GP, a software suite built by GENETIS

collaborator Kai Staats, used in this analysis [108, 34, 107, 109]. A discussion of the

109



software’s functionality and a brief description of how to perform Karoo GP runs are

included. Also described is the construction and testing of a fitness function that was

not already present in Karoo GP and had to be custom-built. More details on Karoo

GP are given in Appendix C.

Next, I will describe the process of an initial investigation using one antenna

channel, including variable exploration and initial results. From these results, an

additional variable was extracted to improve the classification accuracy further. In

the final section, I will increase the complexity of the analysis by repeating the proce-

dure while utilizing the data from all antenna channels through coherently summed

waveforms.

4.1.1 Literature Review

Karoo GP was originally created for a classification analysis of data from the

Square Kilometre Array (SKA) in South Africa [108]. The goal was to generate solu-

tions to classify data as signal or radio frequency interference (RFI). As an exploration

of Karoo GP’s potential, the creator conducted significant work testing di↵erent GP

parameters and comparisons to other ML algorithms. Karoo GP was able to perform

similarly to other algorithms.

The analysis conducted in this Chapter is loosely based on another study in-

vestigating the classification of LIGO data with Karoo GP [34]. In this study, the

authors examined 1.47 days of single-interferometer LIGO data, injected with simu-

lated gravitational waves produced by four di↵erent models. They utilized 11 variables

to describe each event, including the signal-to-noise ratio, duration, frequency, and

bandwidth. After 200 di↵erent Karoo GP runs, the resulting solution was able to
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Figure 4.1: Specificity or TNR (left) and false negative rate or FNR (right) of a
classification analysis of LIGO data injected with simulated events. The GP was run
200 times with the same parameters, and the evaluation of the best solution was done
to determine the TNR and FNR. Figure from [34].

.

identify 96.2% of noise transients while misclassifying only 3.6% of simulated signals.

Histograms displaying the specificity (True Negative Rate, TNR) and False Negative

Rate (FNR) of the 200 runs in this analysis are presented in Fig. 4.1.

The authors also repeated this analysis using only a high SNR noise sample,

demonstrating that the GP could be tuned to target a particular type of background.

Finally, they performed a Bayesian analysis to determine the probability of an event

labeled as a signal actually being a real signal, based on the repeatability of that

label.

Computational techniques have become more prevalent in Physics analyses; how-

ever, the use of GPs is lacking compared to other fields. The KM3NeT collabora-

tion, an optical Cherenkov experiment based in the Mediterranean Sea, has begun

using random forests, boosted decision trees, and neural networks in various analy-

ses, including event identification, energy/direction estimates, and signal/background

discrimination [43]. The use of convolution neural networks was examined for signal
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background classification in IceCube and ATLAS in [25]. The potential for deep learn-

ing searches for exotic particles from colliders was investigated in [26]. Similar to the

above GP LIGO analysis, neural networks have also been applied to explore gravita-

tion wave signals from core collapse supernovae [35]. A review of machine learning

in high energy physics and neutrino physics can respectively be found in [112] and

[97]. One example of the use of GPs in Physics is a study where GPs were used to

model nucleon-nucleon collisions and predict the distributions of the shower parti-

cles [47]. Another example is the creation of software similar to Karoo GP, called

PhysicsGP, where the authors demonstrate the ability of the software to search for

new particles [41].

Applications of GPs have been conducted in a number of other fields to solve a

variety of complex problems. In the medical field, GPs were used for the identification

of Cancer based on the classification of microarray gene expression data [111] and for

the diagnosis of Parkinson’s disease [103]. In [88], a GP was used to establish a

connection between seas’ surface temperatures and rainfall that could be utilized for

long-term forecasting. A review of GP applications and future possibilities in Civil

Engineering is presented in [116].

4.1.2 GP Evaluation Terminology

To reduce overfitting, the models are often evaluated on a separate testing sample

from the training sample. In addition to the fitness score (described in detail below),

a confusion matrix can describe a classification model’s performance, which helps

visually define the model’s performance. Note that the convention of the indexes
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may be di↵erent. The format of the confusion matrix used in this analysis is given

below:


True Negatives (TN) False Positives (FP)
False Negatives (FN) True Positives (TP)

�

In the context of two group classifications this is simply:


Count of Group 0 Correct (TN) Count of Group 0 Incorrect (FP)
Count of Group 1 Incorrect (FN) Count of Group 1 Correct (TP)

�

A more detailed list of classification terminology is presented in Appendix B.

4.1.3 ARA Data Acquisition and Structure

A brief discussion of the ARA stations was given in Chapter 1.5.2. This section

presents a deeper discussion of how data is acquired in the ARA experiment, the data

structure, and how to access waveforms and variables.

After a signal induces a voltage in an in-ice ARA antenna, it goes through a 150-

850 MHz band-pass filter and a 450 MHz notch filter before an amplifier. The signal

is then converted to a fiber-optic signal at the Downhole Transition Module (DTM)

to travel to the surface. Once there, the Fiber Optic Amplification Module (FOAM)

amplifies the signal by another 40 dB before passing it to the Data Acquisition (DAQ)

box. Next, the DAQ splits the signal to the Digitizing Daughter Boards (DDAs) and

the Triggering Daughter Boards (TDAs). The DDAs digitize the signal while the

TDAs handle the triggering.

The ARA Triggering and Readout Interface (ATRI) board receives the signal

from the DDA and TDA boards. If the input from the TDAs indicates a trigger, the

ATRI board reads out the signal from the DDAs. Triggering occurs when three out

of the eight VPol or HPol antennas detect a signal greater than about 5 times the
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average thermal noise within 170 ns (the time for an EM wave to cross the array).

The exact threshold value is automatically adjusted via a servo to trigger at a rate

of approximately 5 times per second. A triggered event is sent through a fiber-optic

network to the IceCube Counting Laboratory. The final event is the waveforms for

each antenna and general event information that is eventually stored in a ROOT file.

ARA searches involve a blinding scheme with a 10% burn sample used for initial

analysis and a 90% sample used for final analysis. The burn sample is used to deter-

mine cuts and estimate background without biasing the final analysis. Since a low

number of neutrinos are expected it is unlikely, but not impossible, that a neutrino

event could exist in the burn sample. Several runs and time frames contain bad data

due to calibrations, broken equipment, and sizeable anthropomorphic noise. These

anomalies were removed from the data set.

For each run, which is just a sequential directory, one ROOT file is created.

ROOT is an Object-Oriented C++ framework built by CERN for handling large

data sets. ROOT files contain TTrees, which are a type of column-oriented data

set. For ARA each row in the TTree contains the waveforms for each antenna and

additional information about an individual event. Each TTree stores the events from

one run, totaling about 225,000 per run. The ARA collaboration has built a set of

C++ libraries called ARA ROOT, which is used to read and analyze the data files.

Once the TTree has been properly read, one can loop through the events of the run

to access the waveforms. ARA ROOT handles the basic calibration of events through

the UsefulAtriStationEvent class with the kLatestCalib flag (or UsefulIcrrSationEvent

for Testbed and early A1 events), which turns the raw event into a “useful” event. This

includes pedestal subtraction, which is the process of testing for a DC o↵set at regular
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intervals and correcting the drift. This process also conducts voltage calibration,

timing calibration, and cable delay correction. The useful event is created with the

following code.

1 UsefulAtriStationEvent *realAtriEvPtr = new UsefulAtriStationEvent(
,! rawAtriEvPtr , AraCalType ::kLatestCalib);

For each useful event, a quality check is also done, and events that fail are removed.

This cut is based on a rudimentary glitch detection, including waveforms with too

few samples, sample timestamps that are not sequential, and other known hardware

glitches. Events are skipped with the quality cut using the following code.

1 AraQualCuts *qual = AraQualCuts ::Instance();
2 bool this_qual = qual ->isGoodEvent(realAtriEvPtr);
3 if(! this_qual){continue ;}

Once the useful event is created and the quality cut is done, the waveform and spec-

trum can be created as TGraph objects.

1 // First the waveform is constructed
2 TGraph *waveform = realAtriEvPtr ->getGraphFromRFChan(0);
3 //Next , an interpolated waveform is created
4 TGraph *interpolated_waveform = FFTtools ::getInterpolatedGraph(waveform ,

,! 0.5);
5 // The padded waveform adds 0V samples to the beginning
6 // and end of the event
7 TGraph *padded_waveform = FFTtools ::padWaveToLength(

,! interpolated_waveform ,2048);
8

9 // Finally the spectrum is made from the padded waveform
10 TGraph *spectrum = FFTtools ::makePowerSpectrumMilliVoltsNanoSecondsdB(

,! padded_waveform);

With the TGraphs, it was then possible to find descriptive variables that could

potentially be used for the GP. For this analysis, the interpolated waveform and

spectrum were typically used. ARA ROOT also has a number of built-in functions

that were used. For custom functions, one can loop through the individual points of

the waveforms and then use the GetPoint function.

1 interpolated_waveform ->GetPoint(i, x_value , y_value);
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The Monte Carlo simulation software AraSim (used in the GENETIS GA) can

produce waveforms depicting how the ARA detector would have seen neutrino events.

Finding these waveforms and obtaining the variables is done in the same process as

the ARA data, except that the AraSim events need to be filtered to only view events

that would have triggered the detector.

4.2 Karoo GP Introduction

Karoo GP is a Python-based GP application suite developed by GENETIS col-

laborator Kai Staats as part of his graduate studies [108]. Karoo GP can conduct

GP evolutions of tree structures with large sets of data, thanks to the multi-core and

GPU support through the TensorFlow library [109]. Karoo GP allows the user to

set various GP parameters and input data for regression and classification analysis.

This section will describe how Karoo GP works, modifications made to Karoo GP,

and finally, the process for conducting runs. Karoo GP can be downloaded from the

GitHub site, and instructions are contained in the user manual.

Karoo GP evolves tree-based functions in one of three modes: matching, regres-

sion, and classification. Matching attempts to determine the exact form of an ex-

pression. Regression is a minimization function that aims to produce equations that

accurately predict a solution. Finally, classification is a maximization function that

attempts to divide the provided data into two or more groupings. Karoo GP is built

with an example for each of these modes, solving a simple expression for matching,

Kepler’s third law of motion for regression, and the Iris flower problem for classifica-

tion. The remainder of this discussion will focus on the classification mode, as this

was the core focus of this chapter.
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4.2.1 The Karoo GP Loop

As with all evolutionary algorithms, Karoo GP follows the same structure de-

scribed previously: initialization, fitness evaluation, creation of new generation, an

iterative loop, and termination. The user is able to alter all of the evolutionary

parameters as needed and in the middle of runs, which allows customization and

fine-tuning of the GP on the fly. The initialization begins by simply constructing the

given number of hypothesis trees (the individuals) of the predefined size and shape.

For the classification kernel, the default fitness function is simply the sum of

correct predictions. For each row in the training data set, the equation representing

the individual is evaluated, giving a resulting number, which acts as a hypothesis.

If this number is less than or equal to 0, then the individual tree predicted the row

should be group 0. If the number is greater than 0, the tree predicted the row should

be group 1. The fitness function then compares the prediction to the actual group

given in the solution column. This calculation is done for each row in the data set, and

the sum of the correct predictions is the final fitness function for the single individual.

The process must then be repeated for all individuals to obtain fitness scores for each

of them.

For building a new generation, Karoo uses the same steps of parent selection and

genetic operations. While the GENETIS loop employs multiple selection methods,

Karoo GP only uses tournament selection. As described before, tournament selection

is when a group of individuals is chosen from the population, and the highest-scoring

individual from the group is picked to be a parent used in generating a new population.

Karoo GP defaults to tournament groups consisting of 7 individuals and increases the
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size by 7 for each additional 100 individuals in the population after the first 100 [107].

An individual can be chosen multiple times to be a parent for the next generation.

The user defines what percentage of each genetic operator is used in creating

the new generation. The operators are not done in succession, and only one is used

when creating the new child. By default, Karoo GP uses 10% reproduction, 0%

point mutation, 20% branch mutation, and 70% crossover, although the user is able

to change each of these parameters, both before and during a run. Point mutation

is set to zero by default since branch mutation can have the same e↵ect when a

terminal node is selected. Changing these parameters during a run allows the user to

interactively help the algorithm out of a local minimum and explore the parameter

space more fully.

Karoo GP runs the evolutionary loop a set number of generations. After the

run concludes, the user can see the results and decide to end the run completely or

continue for additional generations (with or without changing parameters). For a

complete discussion of how to run Karoo GP, including the data file format, various

parameters, and steps of conducting a run, see Appendix C.

4.2.2 Karoo GP Modifications

After initial testing of Karoo GP, it became apparent that some modifications

would be necessary for the desired classification analysis. First, TensorFlow, the

Python library that acts as the basis for Karoo GP, was recently upgraded, and

many of the functions used had been depreciated. Therefore, it was necessary to

work through the Karoo GP source code and update the TensorFlow functions as

necessary.
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A significant endeavor was undertaken to introduce a new fitness function for clas-

sification, which I called weighted classification. This was necessary because of the

inherent equal importance built into classifying each group in the default fitness func-

tion. If an individual tree correctly predicts a row’s group, the fitness score increases

by 1, regardless of the group. This makes sense for the famous Iris classification prob-

lem, where there is no di↵erence in importance between each group. However, there

are classification problems where it is desirable to favor one group over the other.

In the case of the analysis presented here, where background data is contrasted with

simulated event data, either group could be viewed as more important.

Suppose one wanted to use Karoo GP for an early cut to eliminate most back-

ground but keep all the potential signal events. In that case, the function could be

set up to favor actual signal and thus predict signal events extremely well and be

less concerned if the background was incorrectly classified. Conversely, if the analysis

hoped to determine with high confidence if an event was signal and not background,

it could favor background events and thus be able to more confidently eliminate all

background events even if some signal events were also incorrectly classified. Note

that this could be artificially done with Karoo GP by using a data set that contains

an unequal number of each group; however, building a new function allowed for more

flexibility and control.

With this rationale in mind, the goal was to build a new fitness function within

Karoo GP that would allow the user to set the importance of each group. The simplest

way to do this was to alter the fitness score, so that correct predictions caused an

increase by a di↵erent amount for each group. During the Karoo GP initialization, a

parameter was added where the user would enter a weight, w0 between 0 and 1 for
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Group 0. The weight of Group 1, w1 would then be automatically set to 1 - w0, so

the sum of the weights is 1. The fitness score then becomes:

Fitness Score = C0 ⇥ w0 + C1 ⇥ w1 (4.1)

where Ci is the total number of correct predictions for group i, and wi is the corre-

sponding weight.

Karoo GP is open source and well-commented, with some instructions on how to

implement new fitness functions. The most significant challenge was learning and

implementing the code using TensorFlow. The following code excerpt is a simplifica-

tion of the final code to update the fitness function. Keeping with the terminology

of Karoo GP, the “solution” is the actual group of the row, and the “result” is the

prediction of the individual.

1 # First the Group 0 rows are evaluated
2 # rule11 is true if the row is in Group 0
3 rule11 = tf.equal(solution , 0)
4

5 # rule12 is true if the result (prediction) is less than or
,! equal to 0

6 rule12 = tf.less_equal(result , 0)
7

8 # rule13 is true if both the above lines are true
9 rule13 = tf.logical_and(rule11 , rule12)

10

11 # Next the True/False values are converted to 1/0
12 r13 = tf.cast(rule13 , tf.int32)
13

14 # The number of correct Group 0 predictions are summed # and
,! converted to a float

15 G0_Correct = tf.cast(tf.reduce_sum(r13), tf.float16)
16

17

18 # Next the Group 1 rows are evaluated
19 # rule21 is true if the row is in Group 1
20 rule21 = tf.equal(solution , 1)
21

22 # rule22 is true if the result is greater than 0
23 rule22 = tf.greater(result , 0)
24
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25 # rule23 is true if both the above lines are true
26 rule23 = tf.logical_and(rule21 , rule22)
27

28 # Next the True/False values are converted to 1/0
29 r23 = tf.cast(rule23 , tf.int32)
30

31 # The number of correct Group 0 predictions are summed # and
,! converted to a float

32 G1_Correct = tf.cast(tf.reduce_sum(r23), tf.float16)
33

34 # The weights are then determined
35 # weight_0 is set to the user inputted value
36 weight_0 = self.w0
37

38 # weight_1 is set to 1 - weight_0
39 weight_1 = 1-weight_0
40

41 # The new fitness function is then calculated
42 new_fitness_score= (G0_Correct*weight_0) + (G1_Correct*weight_1)
43

44 # For comparison and debugging , the normal classify fitness
45 # score is also determined:
46 old_fitness_score_classify = G0_Correct + G1_Correct

4.2.2.1 Validation of New Fitness Function

In order to ensure the custom fitness function was operating correctly, several tests

were conducted. Primarily, 8 runs were conducted with di↵erent Group 0 weights,

ranging from 0.1 to 0.9. These runs evolved solutions over twenty generations with

data containing only one variable. The results are presented in Fig 4.2, which illus-

trates that altering the weight correctly favors one group and allows adjustment of

the final result to suit specific needs.

With a single variable, the equation Karoo GP finds can be set equal to zero and

solved to determine a constant, which acts as a single variable cut on the data. By

plotting the density curves for the data and vertical lines for the constants found

at some example weights, we can see how the di↵erent weights lead to a shift in

the cuts to maximize the fitness score, as illustrated in Fig 4.3. With the Group
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Figure 4.2: Customized fitness function check, showing the e↵ect of the weight on
the TNR (specificity) and TPR (sensitivity). When the weight is adjusted, the rate
of change between TNR and TPR is dependent on the variable(s).
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0 (Background Events) weight set to 0.1 and the Group 1 (AraSim Events) weight

set to 0.9, the algorithm determined that a cut at -105 mV (shown in blue) would

maximize the fitness score by classifying all events to the right of the vertical line

as Group 1. Because the incorrect Group 0 classifications are less costly, this weight

ensures that most signal events are classified as Group 1, with only a small portion

as Group 0. Conversely, the red vertical line shows the cut when the Group 0 weight

is set to 0.8, and thus, the background events are worth more to the fitness score.

Here all the events less than 230 mV are classified as Group 0. In this case, 100% of

events were classified as background, because there was no value in which the AraSim

events exceed the background at the sides of the distributions. The black line shows

the cut when both groups are weighted equally, here the value is equivalent to the

Karoo GP’s default classification fitness function. The cut occurs at the intersection

of the two curves, where the maximum number of events will be classified correctly.

The e↵ect of the weight is somewhat dependent on the classification abilities of

the variables. For a variable that is not very discriminatory, such as the integrated

voltage used in the charts above, changing the weight causes significant shifts within a

narrow band of weights. However, variables that are more discriminatory may require

large or extreme weights to shift the threshold su�ciently.

4.3 Classification Analysis

The following investigation loosely follows the steps of the LIGO data analysis

mentioned above [34]. The basic premise is to combine actual ARA data (that is

almost surely all background) with simulated neutrino events from AraSim, and then
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Figure 4.3: Density distribution of the Integrated Voltage, demonstrating how the
change in weights of the fitness function alters the location of single variable cuts.
W0 represents the weight of the Group 0 or background group.

use Karoo GP with the modified classification kernel to generate functions to predict

the groups. The general procedure is outlined below.

1. Extract variables from the ARA and AraSim data

2. Prepare the data files

3. Variable Exploration

4. Run Karoo GP to obtain classification functions and explore results

This procedure was first conducted on an initial set of variables. In order to

improve the accuracy of the classification, a new variable was extracted, and the

procedure was repeated. The following sections describe those results.
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4.3.1 Analysis with Initial Variables

1. Extract variables from the ARA and AraSim data

The data for this investigation comes from the 2013 operation of the A2 detector. The

initial results only utilized a single detector channel. The 100% data set was used,

as there was no need to burn the 10% that is typically done for a search as there is

no need to find cuts or background estimates before the classification analysis. Since

higher SNR (HSNR) background events are more di�cult to distinguish from neutrino

events than low SNR (LSNR) background events, this investigation focused on high

SNR background events, which are hereafter referred to as background events, unless

otherwise specified. The threshold between high and low SNR events was chosen

to be an SNR of 5.5, which causes the HSNR events to represent about 12% of the

data. This value was chosen somewhat arbitrarily but is an approximate cuto↵ that

is an estimate of other cuts used by ARA. Additionally, data was only taken from the

summer months (October-February) because these months tend to have more noise.

The data extraction was done using the Ohio Supercomputer Center and the final data

set contained 50 runs totaling 10.3 million events, with 1.2 million calibration pulsers

and 111,000 thousand HSNR events. The initial investigation used the following list

of variables, which were extracted using the procedure outlined above.

• Peak voltage - The highest voltage obtained in the waveform

• Peak time - The number of nanoseconds since the start of the event to the

peak voltage

• Sum voltage - The sum of the voltage for all data points in the waveform

• Integrated voltage - The integrated area under the waveform
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• Peak power - The highest power obtained in the spectrum

• Peak frequency - The frequency that the highest power occurred at in the

spectrum

• Integrated power - The integrated area under the spectrum

• SNR - The signal to noise ratio of the waveform

The same variables were extracted from an AraSim data set that was generated

using a neutrino energy of 1018 eV. The total number of triggered AraSim events was

12,320.

2.Prepare the data files

Next, the ARA data and simulated events need to be combined. A complete flow

chart of the data can be seen in Fig. 4.4. Due to a limitation in TensorFlow, the

maximum data set that could be run on Karoo GP is 150,000 rows. Karoo GP

also requires an equal number of rows for each group being classified. Consequently,

75,000 of the HSNR events were extracted from the full data set using the R sample

function (which uses a uniform distribution rejection method). The remaining 36,000

were saved as an external sample for testing after Karoo GP runs were completed.

To match the HSNR sample, the AraSim data set was duplicated 10 times, and then

75,000 events were extracted in the same matter. Duplication of the simulated events

was not ideal, but necessary due to time constraints. Similarly, 36,000 AraSim events

were saved from the remaining duplicated data set for the external testing sample.

A new “s” column was made in each data set containing a 1 for the AraSim events

and a 0 for the HSNR sample. This is used by Karoo GP in the internal training

and evaluating steps to see if an individual prediction was correct. Karoo GP uses
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Figure 4.4: Illustration of how data is divided between throughout the GP workflow.
Shown is the ARA background data (blue) and AraSim simulated data (red), which
are combined to run Karoo GP (yellow) and a post GP blind testing (green).

80% of the data provided for training the algorithm and 20% for internal evaluation.

Each time Karoo GP is run, the data is split again. Finally, the training sample was

created by combining the 75,000 events from each group and reordering them. The

blinded test sample was created by combining the 36,000 event groups.

3. Variable Exploration

Before running Karoo GP, the density distributions of each variable were plotted to

better understand how the di↵erent groups were described by that particular variable.

The results are seen in Fig. 4.5.
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Figure 4.5: Comparison of the density distributions for each of the initial variables.
Note the SNR plot only shows two groups: AraSim (red), and the combined HSNR
and LSNR background (teal).
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Fig. 4.5 provides some interesting insight that can inform the investigation. First,

from these initial variables, peak voltage, peak time, peak power, and integrated

power are the most descriptive of the class. Furthermore, the high SNR group has

more overlap with the AraSim events than the low SNR group. This means that

the results of using high SNR and AraSim events can be used for low SNR classi-

fication. The sum voltage, integrated voltage, and peak frequency variables do not

discriminate between the groups well independently. However, beyond single variable

uses, the GP could find combinations of the seemingly poor variables that are e↵ec-

tive at classification. The SNR variable only shows the AraSim events in red and

the combined high SNR and low SNR background in teal. SNR was excluded from

further analysis since when comparing high SNR events and AraSim events, the SNR

cuto↵ provides an artificial comparison between the groups. Moving forward in this

dissertation, “background” will only refer to the selected high SNR events.

In order to test the e�cacy of the GP, each variable was individually run through

Karoo GP with equal weight for each group (high SNR and AraSim). The expected

result is the intersection of high SNR and AraSim density curves that maximizes the

number of AraSim events to the right of the line. Karoo GP was able to exactly

determine these values for each variable accurately.

Furthermore, plotting 2D distributions of a combination of two variables, as shown

in Fig. 4.6, helped to see whether any could potentially work together to discriminate

between the groups. Two variables that appeared to be able to discriminate between

the groups well were integrated power and peak voltage, which were used in the first

multi-variable Karoo GP runs as shown in the figure.
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4. Run Karoo GP to obtain classification functions and explore results

A Karoo GP run was conducted on the test sample with only integrated power and

peak voltage (given that the 2D distributions seemed promising) with a tree depth

of 5 and equal weight for 50 generations with 100 individuals. The highest scoring

individual of generation 50 was defined by the equation 3Pint
25 +4Vp� 2598, where Pint

is the integrated power and Vp is the peak voltage. The resulting confusion matrix

is given below, which amounts to an accuracy of 98.9% with a TNR of 99.2% and a

TPR of 98.7%.


14, 801 116
202 15, 031

�

Fig. 4.6 shows an example of the distribution of the groups using the integrated

voltage and the peak voltage. The solid line shows the threshold created by the

highest scoring individual. The vertical and horizontal lines show how the integrated

power and peak voltage respectively, would separate the groups alone. This result

demonstrates high levels of accuracy with only a few key variables. However, it is

still short of the initial goal.

Next, Karoo GP was run with all the initial variables to see if any better hy-

potheses could be evolved. The default Karoo GP parameters were used with 100

individuals over 50 generations and a tree depth of 8. The highest-scoring individual

was defined by the equation �9Pint
100fp

� 2Pp+Vp� 76/3, where fp is the peak frequency,

and Pp is the peak power. The resulting confusion matrix is given below, which

amounts to an accuracy of 97.3% with a TNR of 98.4% and a TPR of 96.2%. The

resulting confusion matrix is given below.


14, 563 583
228 14, 626

�
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Figure 4.6: Result of two variable GP analysis showing clear discrimination. The
solid line is the threshold created by the equation 3Pint

25 +4Vp�2598 = 0 found by GP
using equal weights. The dashed lines show where the single variable would evenly
separate the groups.

This result contains several interesting insights into classification algorithms. This

result with all variables performed worse than the two variable (integrated power and

peak voltage) result given above, despite only having additional variables (the two

variables used above were still present). First, this is an example of overfitting, where

the resulting model is more complicated than necessary. The confusion matrix is built

from the 20% of the data Karoo GP saves for evaluation, so the model was built on

a di↵erent set of data and became more complicated to match the training set too

closely. Second, this illustrates the importance of the initial settings of the run. By

allowing trees to grow more complicated (larger depth), overfit results are more likely.

Additionally, the more variables, the more challenging it is to search the parameter

space exhaustively. Given enough generations, the GP would have found a result
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that exceeded or matched the two variable result; however, the overfitting could have

been even worse. Using the same number of generations as the two variable run,

the many variable run was unable to equal the results of the simpler run. Finally,

this demonstrates the stochastic nature of GPs, and how even repeating the same

parameters and data multiple times could give di↵erent results.

Running the algorithm again, but with a smaller maximum tree depth, the GP

converges to �4Pint
100 +7Vp�8. The resulting confusion matrix is given below, which gives

a TNR of 94.7% and a TPR of 97.7% (accuracy of 96.2%). Of particular interest is

that the algorithm converged to the two variables used alone above. This highlights

the GP’s ability to determine which variables are most discriminatory. However,

this result is worse than when only those two variables were used because a larger

parameter space was being searched in the same number of generations. Having not

yet reached the goal it was clear that additional variables would be needed.


14, 308 792
331 14, 569

�

4.3.2 Variable Extraction and Results

In order to improve the classification results and reach the goal of a TNR of 99.9%

and a TPR above 90%, it was apparent that additional variables were necessary. In

order to find new variables, events from both groups were visually inspected and

compared. Fig. 4.7 shows four representative waveforms from each group. The High

SNR waveforms were explicitly chosen to identify the events that the peak voltage

alone would not classify. In other words, high SNR waveforms where the peak voltage

exceeded 100 were examined in particular.
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AraSim High SNR

Figure 4.7: Example waveforms from AraSim (left column) and High SNR events
with a peak voltage above 100 (right column).
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Examination of the waveforms in Fig. 4.7 reveals some additional features that

may help the GP discriminate better. The most straightforward takeaway was that

the AraSim events typically had multiple high points near the peak voltage. In

contrast, the peak voltage in high SNR background events was typically a single

point rising above the noise (or multiple high points spread throughout the waveform).

Another noticeable feature was that more symmetry existed in the AraSim events;

near the peak voltage there were also many negative points that loosely mirrored the

higher positive points mentioned above. In other words, the envelope of the AraSim

events had more vertical symmetry about the horizontal axis than the background

events. The fourth AraSim plot does seem to be an exception to this rule, which is

most likely due to the event triggering from hitting channels other than the one being

investigated. However, this event does have elevated voltages throughout the entire

waveform.

In order to make a single variable that described these observations, I first found

that the width of the elevated voltage sections in AraSim averaged around 50 ns (or

±25 ns around the peak). I then explored di↵erent thresholds in the range around

each peak and found that the most discriminatory variable was counting the number

of samples whose absolute value exceeded 40 mV, which I defined as the count of

elevated voltage near peak, Cevnp. Since the interpolated waveform was used with 0.5

ns interpolation, this variable could have values between 1 (the peak voltage) and

101 (if all points were elevated). This variable succeeds in capturing (1) the presence

of additional high values near the peak in AraSim events, and (2) the symmetry of

AraSim events, because the absolute value was taken. The density distribution for

this variable with AraSim events, high SNR background, and low SNR background
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Figure 4.8: Density distributions of the new variable, which counted the number of
samples whose absolute value exceeded 40 mV with 25 ns of the peak voltage.

is shown in Fig. 4.8. Armed with a new promising variable, the data was extracted

and combined again in the manner described above for additional Karoo GP runs.

4. Run Karoo GP to obtain classification functions and explore results

First, the new variable was combined only with the peak voltage variable and ran with

Karoo GP, with a maximum depth of 8. The highest-scoring individual was defined

by the equation Cevnp+9� 2304
Vp

� 207552
V 2
p

, where Cevnp is the elevated voltage near peak

term. The individual seems overly complicated, despite the excellent performance,

with a TPR of 99.6% and a TNR of 99.2%. Additional testing showed that overfitting

continued to be an issue at that depth. Running the GP again with a lower depth of 5

resulted in a simpler equation with almost the same performance: 4Cevnp+2Vp� 334

with a TNR of 99.1% and a TPR of 99.6% (accuracy of 99.4%). The confusion matrix

is given below.


14, 898 135
54 14, 913

�

135



Next, an additional variable, the integrated power, was added. Integrated power

was chosen because it had previously shown promising results paired with peak volt-

age. Interestingly, after each test run (with a depth of 5), the integrated power term

was dropped out of the equations, illustrating the GP’s ability to eliminate unnec-

essary variables. The top equation was given by Cevnp +
Vp

2 � 84 and the confusion

matrix is given below.


14, 832 81
117 14, 970

�

At this point, the new fitness function allowing the weight of each group to be

changed was implemented to favor correct background (negative) selections. Tab. 4.1

shows the results of adjusting the weight while using only the elevated voltage near

peak and the peak voltage terms. The same parameters were run ten times for each

weight, and an average TNR and TPR were taken. Each run had a tree depth of 5,

with 100 individuals evolved over 50 generations. As expected, there is a clear trend

of improving TNR and a reduction in TPR as the weight increases. At a group 0

(background) weight of 0.98, the averages exceeded the initial goals of 99.9% TNR

and above 90.0% TPR.

An example of an individual that exceed the goal is 2Cevnp+Vp� 584
3 with a TNR

of 99.93%±0.021 and a TPR of 94.85%±0.18 (accuracy of 97.4%). The confusion

matrix is given below.


14, 872 10
778 14, 340

�

The same individual was tested against the external blinded data set removed

before Karoo GP, achieving a TNR of 99.92%±0.015 and a TPR of 95.04%±0.11

(accuracy of 97.5%). Fig. 4.9 shows the density distributions for each group for the
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Table 4.1: TNR and TPR resulting from varying the weight when evolving individuals
using peak voltage and elevated voltage near peak.

Test
Number

Background
Weight

AraSim
Weight

TNR (%) TPR (%)

1 0.5 0.5 98.02 99.75
2 0.6 0.4 98.28 98.77
3 0.7 0.3 98.85 98.87
4 0.8 0.2 99.41 97.62
5 0.9 0.1 99.81 97.81
6 0.95 0.05 99.86 96.07
7 0.98 0.02 99.93 96.81

testing sample and blinded evaluation samples, with the above equation plotted in

both. The confusion matrix is given below.


36, 052 29
1, 788 34, 293

�

Using the weight of 0.98 for group 0, the GP was run 300 total times to generate

the following histograms, demonstrating the expected range of results if one were to

run the GP. The result is presented in Fig. 4.10, which demonstrates that 71% of runs

resulted in a TNR greater than the target of 99.9%.

4.4 Classification of Coherently Summed Waveforms

In this section, the signals from multiple antennas are combined to extract single

variables containing information from every channel and, consequently, classify even

better. Coherently Summed Waveforms (CSWs) are created by o↵setting each signal

to maximize the correlation between the channels. The signals are then summed to

provide one waveform. This analysis was conducted using only VPol antennas and

with events that triggered the VPol antennas. The general procedure is given below.
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Training Data Test Data

Figure 4.9: Result of two variable GP analysis (peak voltage and elevated voltage
near peak) showing clear discrimination. The left panel shows the distribution of
the testing data that was fed into the GP. The right panel shows the distribution
of the external testing data. The solid line is the threshold created by the equation
2Cevnp + Vp � 584

3 = 0 found by GP. The dashed lines show where the single variable
would best separate the groups.

Figure 4.10: Histogram of TNR result of best individual from 300 Karoo GP runs
using peak voltage and the elevated voltage near peak with a background weight of
0.98. The mean is given by the dashed line.
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Figure 4.11: Translated waveforms of an AraSim event. The amount of translation
is based on of the correlation function from each channel to the base, which in this
case is channel 6.

4.4.1 Data Preperation

First, the event is checked to see if it triggered the VPol antennas (requiring 3 of

the 8 antennas having an SNR greater than about 5.5). Next, the antenna with the

highest peak voltage is set to be the base channel. A correlation function is found that

compares the base channel to each of the other channels. Maximizing the correlation

function provides the time that the signals are most highly correlated. That time

acts as a delay that translates each waveform to align with the base channel. An

example showing the translated waveforms of an AraSim event is given in Fig. 4.11.

The translated waveforms are then summed at each point to produce the CSW shown

in Fig. 4.12.
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Figure 4.12: Example CSWs. Left: CSW created from the AraSim event translated
waveforms shown in Fig. 4.11. Right: Example background CSW. Note the signifi-
cantly di↵erent vertical scales.

Fig. 4.12 demonstrates the potential usefulness of CSWs in the classification of

these events. The CSW for thermal noise and other common background will have

low signal-to-noise ratios. Conversely, AraSim events will have a high correlation,

so the waveforms will constructively add, producing waveforms with a much higher

magnitude than the background.

Peak voltage and the elevated voltage near peak variables derived from the CSWs

were both explored using Karoo GP. To account for the increase in magnitude of the

CSWs compared to the single channel waveforms, the elevated voltage near peak was

redefined as the count of samples within 25 ns of the peak voltage with at least a

voltage magnitude of 320 mV (eight times the previous definition). The individual

distributions of both variables are given in Fig. 4.13.
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Figure 4.13: Comparison of the density distributions for the peak voltage and elevated
voltage near peak for the CSWs.

4.4.2 Classification Using CSWs

The elevated voltage near peak and peak voltage were extracted and input into

Karoo GP using the same procedure as before. This test was repeated 25 times.

Running with additional variables did not improve the results below. Interestingly,

there appeared to be a local maximum where the GP converged about 70% of the time

to an equation that only used the elevated voltage near peak variable. An example

individual is given by Cevnp

4 � 12, which corresponds to a cut at 48. The confusion

matrix for that individual was:

13, 370 102
1206 12, 488

�

which corresponds to a TNR of 99.2% and a TPR of 91.2% (accuracy of 95.2%).

In the remaining 30% of runs, the GP found individuals with both variables that

were able to distinguish between the groups better than previously achieved. An

example is given by the individual Cevnp+
Vp

50 �83, which had a TNR of 99.97%±0.015
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Figure 4.14: Result of CSW GP analysis using peak voltage and elevated voltage near
peak. The solid line is the threshold created by the equation Cevnp +

Vp

50 � 83 = 0
found by GP.

and a TPR of 99.90%±0.03 (accuracy of 97.4%). The line produced by this individual

is displayed on the 2D density plot of each variable in Fig. 4.14.


13, 578 4
16 13, 584

�

4.5 Conclusion

This chapter outlines the use of genetic programming to classify ARA background

and simulated neutrino events. The software suite Karoo GP was modified to allow

the variation of weights for each group. Various standard variables were explored, with

the most promising being the peak voltage and integrated power used in conjunction.

A custom variable, the elevated voltage near peak, was extracted and found to be

very discriminatory. The goal of a 99.9% classification of background was first reached

using the peak voltage and elevated voltage near peak, with a background weight of
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0.98. This result was further improved by creating coherently summed waveforms

and running the same two variables with equal weight. This investigation highlights

the potential for GP in data analysis for astrophysics.
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Chapter 5: Conclusions and Future Work

This thesis has discussed two main applications of evolutionary algorithms in UHE

neutrino astrophysics. Chapter 3 describes the use of GAs to design antennas for UHE

neutrino experiments. Chapter 4 presents an investigation on using GP to classify

background and simulated events for the ARA experiment.

The GA of Chapter 3 was created through the e↵orts of the GENETIS group.

The overarching goal of the GENETIS group is to use evolutionary algorithms to

optimize astroparticle physics experiments and ultimately advance the field. As a

first project, the GENETIS group has worked to evolve the design of antennas used

in UHE neutrino detection experiments. This required the integration of XFdtd and

AraSim to provide fitness scores based on the science outcome of the individual.

Chapter 3 provides an overview of all projects the GENETIS team has worked on

since its inception in 2017. The earlier projects provide a proof of concept. Over time,

each project built on the lessons (and code) of prior work to reach the final results in

the evolution of both asymmetric bicones with linear sides and with nonlinear sides.

The GENETIS group will continue to add additional complexity to the design of the

antennas while working towards improvements in the GA.

In addition to working directly on the GA, as a leader in the group, I mentored and

managed the work of many students on the project. In that capacity, I developed
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tutorials and training to facilitate the on-boarding of the constant stream of new

students. I also created the GENETIS Manual described in Appendix A.

Chapter 4 provides details on the use of GP to classify UHE neutrino events, with

the ultimate goal of achieving 99.9% correct classification of background and greater

than 90% classification of simulated events. The analysis was built using the software

suite Karoo GP. By combining actual ARA background data with simulated AraSim

neutrino events, a GP could be used to build functions that classify the data.

The initial investigation involved readily available variables from the waveforms.

While the initial runs were promising, I needed to complete two additional steps to

reach the goal. First, a new variable was extracted that took advantage of both the

envelope width and symmetry that was present in the simulated events but not in

the background events. Second, a new fitness function was designed and added to

Karoo GP that allowed for di↵erent priorities to be placed on the di↵erent groups

being classified. These changes allowed the goal to be reached with a limited number

of variables. Coherently summed waveforms (CSWs) were also constructed and the

variables derived from them were examined with Karoo GP. These waveforms allow

information from all 16 antennas in a station to be used in the analysis. Using CSWs,

Karoo GP was even more e↵ective at separating AraSim-generating events from high

SNR events. The results of Chapter 4 provide strong evidence for the use of GP in

data analysis in astrophysics and the classification of large data sets in any field.

Evolutionary algorithms are a powerful area of computational intelligence that is

only recently being explored in physics. This thesis explores some uses of evolutionary

algorithms in UHE neutrino astrophysics and help expand their use. The results of

these projects show a promising future for evolutionary algorithms and present an
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argument for their continued use in the optimization and analysis of astroparticle

physics experiments.
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Appendix A: The GENETIS Manual

This manual is to help anyone joining the OSU GENETIS group or anyone inter-

ested in utilizing our work. Please read Chapters 2 and 3 before going through this

appendix section. As a note, it is advisable that you get an account with the Ohio

Supercomputer Center (OSC) before you begin digging into running or modifying

this code. All code is set to run on OSC; the job submission scripts for AraSim and

directories must all be modified if this software is adapted to other supercomput-

ers. Additionally, (1) this software is too slow to run locally, and (2) XFdtd is quite

costly and needs to be purchased/installed and is already present on the OSC clusters

(XFdtd used for PAEA loop, not AREA). The OSU GENETIS group runs primarily

through their supercomputers. Anyone joining the OSU Connolly group can request

an account. Details in setting up your account are addressed later in this section.

A.1 Introduction to the GENETIS Project

There is a future and a history of this code; both are relevant. Our first pre-

sentation of results was in April of 2018, where this group presented at April APS

displaying (1) the success of the evolution of a quarter wavelength dipole antenna (es-

sentially used as a sanity check to show our software was properly evolving) and (2)

that we can evolve physical gain pattern to maximize or minimize gain in a specific
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direction. Note that the old code for the dipole evolution can be found on the follow-

ing GitHub account: https://github.com/hchasan/XF-Scripts. Though that is a

relevant part of this project, the contents of this section are focused mainly on later

works, such as the bicone evolution (PAEA project) and AREA. For now, the purpose

of the bicone evolution package is to genetically evolve the inner radius, length, and

the coe�cients of a polynomial for each side of the cone. The purpose of the AREA

software is to evolve a radiation pattern at a single isolated frequency. Our future

goal is comprised of three main things (1) show we can evolve more complicated an-

tennas (PAEA bicone loop), and (2) evolve a gain pattern to both find the maximum

e↵ective volume possible (AREA loop), and (3) use the optimized beam pattern to

guide us in producing an antenna. This means that eventually, we would be able to

create antenna geometry based on it evolving toward a specific set of gain patterns.

A.1.1 Tutorials

Before modifying or working with the code, skills in bash, python, some C++,

the XFdtd coding language (xmacros), and Git are required. In order to help gather

the skills you need to be familiar with the way this software was coded, we highly

suggest the following tutorials after you have read through Chapter 2 and 3 of this

thesis:

Intro to Bash

Intro to Python

Intro to Git

Intro to OSC
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As we will discuss later in this section of the appendix, XFdtd code is in a file

type specific to their software, called “.xmacros.” This language is somewhat similar

to java; however, it still di↵ers significantly. We will discuss how to work within the

GUI of XFdtd later in this appendix, where information apropos the coding language

can be found in the “help” section. Though there are not any formal tutorials or

introductory documentation from Remcom/XFdtd or the OSU group on the .xmacro

language, this “help” function within the GUI is the most viable resource. For more

information on how to access this, see section A.3.1.2

It is also recommended that anyone interested in learning more read chapter 3

of the book “Introduction to Evolutionary Computation” by Eiben and Smith; it is

accessible as an electronic copy through the OSU library.

After you have completed the tutorials, please finish reading through the rest of

this appendix, as it will teach you more intimate details of the software and setting

it up. Once you have completed the items from this section, as well as reading this

appendix, you can complete the following practice assignment aimed at reinforcing

your knowledge of our code structure: Practice Getting to Know the Loop. The goal

of this practice assignment is to teach you where to find each piece of software, as

well as to help you master the bash scripts.

A.1.2 Where our Info Exists

If you are new to our group, we have a slack, ELOG, Dropbox, and a Google drive

and can give access upon request. For historical use, here is our outdated GitHub for

dipole evolution.
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To use the PAEA loop, you need the following software installed:

1. XFdtd: note you need this to be purchased through Remcom if you are not an

OSU Connolly group researcher. If you are working with the GENETIS team, this is

already installed on the supercomputers we use.

2. PAEA Github link//

3. AraSim package//

To use the AREA loop, you need the following software installed:

1. AREA Github link//

2. AraSim package//

If you are a part of the GENETIS project, you do not need to add a copy of any of

this software to your user from GitHub. Instead, we run a communal copy of PAEA

on the project space PAS1960; this allows us to not have to change the directories

in the main bash script each time we pull a version that was recently pushed to

GitHub. Additionally, we have a limited number of XF licenses, and a maximum

number of jobs that can be submitted at one time within the Connolly project folder.

This makes it impossible for multiple users to be running the loop at the same time,

even if the software were installed on their individual user’s home directors versus the

general Connolly project space; thus, as a part of the GENETIS team you will not

need to install this, and you will run on a communal copy in a general project space

on OSC (project space PAS1960). Proceed forward for information on how to do so.

If you have correctly set up your .bashrc as instructed in section A.2.3, you can

access the PAEA directory by typing “GE60” to access the bicone folder on PAS1960.
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For Connolly group users, the AREA software is set up on another researcher’s ac-

count. Please reach out to the group on how to proceed until it is transferred over to

PAS1960.

Set the GE60 alias with the following, as seen in section A.2.3:

1 alias GE60='cd /fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/
,! current_antenna_evo_build/XF_Loop/Evolutionary_Loop/'

If you are not part of the Connolly group, you will need to set up your bash script

with the appropriate alias, and the rest of this section may not apply perfectly for

you; however, it should still give you some general guidance.

A.2 Setup

A.2.1 Getting an OSC Account

The software for this project is currently housed and run on the Ohio Supercom-

puting Center (OSC). If you are associated with OSU, you will need an OSC account

to get access. To do this, email or talk to Dr. Connolly about getting an OSC ac-

count. Include the following information in your email:

First and last name

Date of birth

Email address

Phone number

Once you request access, you’ll receive an email stating you’ve been invited to join

the project, PAS1960. Follow the link provided in the email to register your account.

If you don’t already have an OSC account, you’ll also receive an email telling you
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that a request has been made to make one for you and asking you to verify your

email address. As a reminder, you won’t be able to run locally and will need to run

on OSC, as you will need access to XFdtd, which is purchased and installed on OSC

for our usage.

A.2.2 Logging on to OSC

Once you have an account, you can log in remotely to OSC. If you’re running Mac

OS or Linux, simply open the terminal. If you’re running Windows you will need to

get bash set up to work on Windows before proceeding to the next step.

Open the terminal and type:

ssh -XY your_username@pitzer.osc.edu

This will log you into Pitzer. Input your password and hit enter.

A.2.3 Setting up your .bashrc

Once you are able to log onto OSC, you need to set up your .bashrc file. This

should be done before running any GENETIS code. If you are unfamiliar with what

a .bashrc is, it is a bash shell script that the computer automatically runs each time

you log in to OSC. You can put any alias to commands in this file (refer back to the

Bash tutorial in section A.1) and the system will automatically learn/follow these

abbreviations each time you open a new terminal window. The idea in utilizing your

.bashrc is to set up your variables, functions, and aliases. Below is the contents that

need to be added to your OSC .bashrc when you set up your account. Note that this

is only specific to OSU students working in the Connolly group; this will not work

for anyone not authorized to run within this project space. Additionally, note that
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.bashrc files are hidden files in your home user directory. In order to see it you need

to enter the command ”ls -a” (instead of ”ls”) and it should appear. You can edit

this using any editor you prefer (vim, emacs, etc).

1 # .bashrc
2 # Source global definitions
3 if [ -f /etc/bashrc ]; then
4 . /etc/bashrc
5 fi
6

7 #For GENETIS
8 module load gnu /7.3.0
9 module load mvapich2 /2.3

10 module load fftw3
11 module load python /3.6- conda5 .2
12 module load cmake
13 export CC=�which gcc �
14 export CXX=�which g++�
15

16 #For running ARASim
17 source /cvmfs/ara.opensciencegrid.org/v2 .0.0/ centos7/setup.sh
18 source /fs/project/PAS0654/BiconeEvolutionOSC/new_root/

,! new_root_setup.sh
19

20 #Bicone GENETIS directory shortcut alias to PAS1960
21 alias GE60='cd /fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/

,! current_antenna_evo_build/XF_Loop/Evolutionary_Loop/'

A.3 The PAEA Software

In this section, we will be breaking down the stages of the evolutionary loop. The

loop is defined to be the entire software package which contains the code responsible

for the genetic algorithm, antenna simulation software (XFdtd), AraSim, and fitness

function. Fig. A.1 shows a diagram of the stages of the loop, as well as the respon-

sibility of that stage. Note that all stages (A-F) are run by the main Bash script,

which calls separate sub-Bash scripts for each of the stages to be executed.
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A.3.1 Bash Script

Our loop is composed of a multitude of di↵erent programs and languages (XFdtd

xmacros, .cpp, and python) that are all intertwined; in order to run them without

user involvement, we use a Bash script. In other words, a Bash script controls when

every software and code gets implemented, controls the movement of data files in the

system, and provides the input parameters for every code automatically. Our code

is set up with one main Bash script that runs all of our software; the main Bash

script contains sub-Bash scripts that act as functions to call all of the stages (A-F)

of the loop. Each sub-Bash script is responsible for running a di↵erent software. The

software is setup in this way to allow users to more easily find and edit parts of the

loop. A depiction of the function of both the main Bash script and the sub-Bash

scrips can be seen in Fig A.2. In this section, we will focus on the main Bash script,

while the upcoming sections will discuss details of stages A-F and their contents.

The main bash script, called Asym XF Loop.sh, contains all variables and paths,

as well as contains sub-Bash scripts that run all of the stages shown in Fig 3.6. The

intent is that if any of this changes, we only have to modify these variables or paths in

one place; thus, variable values and paths are passed to all other software called in the

loop from this main Bash script. Below are some of the details of the variables and

what they do. Note that most of these don’t change often, except the “RunName”

variable, as each di↵erent run must be named something unique so old data does not

get overwritten.

Notable variables from the main Bash script (Asym XF Loop.sh):
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RunName This is the name of the run. Please include the date, your name, and

details of the run in the name so we can properly document and track runs.

This variable should change each time we start a new run. Note that if we are

continuing a current run, this name should not be changed.

TotalGens This is the number of generations (after initial) to run through. Note

that it starts at generation 0.

NPOP This is the number of individuals per generation. Usually, we utilize 50

individuals as a standard.

NNT This is the number of neutrinos generated/simulated in each AraSim job. The

higher this number, the slower the software, but the lower the error. The lower

this number is, the faster it runs, but the higher the error is. We have been

running about 300k neutrinos consistently, which means if you do NNT=15,000

and Seeds=20, this would be a way of hitting 300k neutrinos.

Seeds This is how many AraSim jobs will run for each individual. In order to speed

up our software, we have modified our AraSim jobs so that, for each individual,

we evenly divide the total number of neutrinos generated into smaller jobs and

run them in parallel; thus, if NNT=15,000 and Seeds=20, this means that we

would submit 20 jobs of 15,000 neutrinos for each individual; thus, the jobs

would be running in parallel to hit an overall NNT of 300k. As mentioned, this

dramatically speeds up our run time.

FREQ This is the number of frequencies being iterated over in XFdtd (currently,

this only a↵ects the output.xmacro). Currently, our software, including AraSim,
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expects 60 frequency steps from 83.33MHz to 1.066GHz, as our signal is broad-

band.

exp This is the exponent of the energy for the neutrinos in AraSim. Currently, we

run at exp=18.

RADIUS, LENGTH, ANGLE, A, B This is an indicator that tell us whether or

not we are running for the symmetric or asymmetric case; thus, are our genes

repeated for both sides of the cone? If we want the run to be for a symmetric

bicone, we set it to 0; if we want it to be an asymmetric bicone, it is set to 1.

SEPARATION This variable is used to tell the software whether or not we are

evolving the spacing between the two cones. If 0, the separation stays constant;

if 1, the separation distance is evolved and becomes another gene for each in-

dividual. Note that the standard setting is for the separation distance to stay

constant (SEPARATION=0).

NSECTIONS This variable determines whether the bicone design being evolved

is symmetric or asymmetric. This variable needs to correlate directly with

[RADIUS, LENGTH, ANGLE, A, B]. If we make any of these asymmetric, this

would need to follow. For example, if this is entirely symmetric, i.e., the genes

of the length, radius, and theta are all copied directly to both sides of the cone,

NSECTIONS=1. If, say, we decided to allow this to be asymmetric by allowing

the length to vary with each cone, then NSECTIONS=2.

database flag Our software is set up to utilize a database. The goal with the

database is to save lots of gain patterns from previous runs. If our individual
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has genes closely resembling that of the genes of a previously run individual,

we would pull from a database instead of recreating the gain pattern through

XFdtd; this is to improve the run time; however, it is not currently operational

for anything other than the symmetric, linear case. This variable should be

equal to 0 if we are not using the database and 1 if we are using the database.

Since it is not yet operational, this should always be 0.

CURVED This setting tells us whether we are running the linear or nonlinear bi-

cone. If CURVED=1, this executes a second-order nonlinear bicone run. If

CURVED=0, this executed the linear (first-order) bicone run.

The final thing to mention is that the main Bash script is also responsible for

running what we call our “save-state”. The savestate.txt is a file that stores infor-

mation apropos the last executed generation and section of the loop – i.e. it saves

the generation, part (A-F) in the loop, etc, as each section and generation finishes.

This way, if our software is stopped for any reason, for example the VDI ends before

we hit the target number of generations, the Bash script can read this file and know

where to pick up from the previous session (see more about VDIs in section A.4).

After each of the sub-Bash scripts A-F is called in the main Bash script, you should

see the line “SaveState Protype.sh $gen $state $RunName $indiv”, which writes to

the save state telling it that the section it just executed has completed.

A.3.1.1 Sub-Bash Script Part (A): Genetic Algorithm and Its Data

The first sub-Bash script (our part (A)) called by the main Bash script is called

“Part A With Switches.sh” if it is linear and “Part A Curved.sh” if it is nonlinear.

As seen in Fig A.2, the sub-Bash script for part (A) does two things: (1) Runs the
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GA and saves the DNA to a .csv file, and (2) moves the GA outputs and renames

the .csv file so it isn’t overwritten.

First, let’s talk about the GA. The genetic algorithm is the process that evolves our

antennas between generations; thus, it generates genes of the individuals for the first

generation, and selects parents and produces children in the subsequent generations.

See Chapter 2 for more details on what GAs do. See Chapter 3.4.2 for details on what

the linear, asymmetric bicone GA contains in terms of selection methods, operators,

and constraints, and see Chapter 3.4.3 for details on what the nonlinear, asymmetric

bicone GA contains in terms of selection methods, operators and constraints.

Part (A) can run two potential GAs for the linear case depending on what we set

the variable NSECTIONS to in the main Bash script. So, if NSECTIONS=1, this

compiles improved GA.cpp and runs its executable. If NSECTIONS>1, then this

compiles Latest Asym GA.cpp and runs its executable. Note that these GAs have to

be di↵erent because the symmetric and asymmetric runs have a di↵erent number of

genes for each individual (as mentioned in Chapter 3).

Similarly, we have two potential GAs for the nonlinear case (‘Part A Curved.sh”).

In the case where it is linear and NSECTIONS=1, it compiles “improved GA.cpp”.

In the case where it is nonlinear and NSECTIONS>1, it compiles “Elite GA.cpp”.

Second, this Bash script moves the GA outputs and renames the .csv file. To do

so, the code saves the genes to generationDNA.csv, copies that file, and renames it

to indicate what generation those individuals (and their DNA) are from (saves it as

gen generationDNA.csv). After this, the main Bash script moves on to parts (B1)

and (B2).
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A.3.1.2 Sub-Bash Script Part (B1) and (B2): XFdtd Simulation Software

The second sub-Bash script called by the main Bash script for part (b) utilizes

XFdtd. XFdtd (XF) is a computational electromagnetism simulation software devel-

oped by REMCOM using the finite di↵erence time domain method for calculations.

The antenna and its properties are simulated in XF by hitting an artificial burst of

radiation on the antenna to calculate its gain patterns. For more information on what

XFdtd does, please see section 3.3.

In this section, we will discuss the two sub-Bash scripts that are responsible for

generating the antenna response pattern with XFdtd. Part (B1) and (B2) are re-

sponsible for three things: (1) Prepares output.xmacro with the parameters (antenna

type, population number, and grid size), (2) Prepares simulation PEC.xmacro with

information on each individual’s antenna parameters, and (3) runs XFdtd and loads

it with both .xmacro files. There are five pieces of code associated with XFdtd: sim-

ulation PEC.xmacro and its two skeletons, and ouput.xmacro and its skeleton. The

skeletons are the text that is constant for each script.

Part (B1) is set up to call either “Part B GPU job1.sh” or “Part B job1 sep.sh”.

Which one of these we run depends on what we set “NSECTIONS” to. Since

NSECTIONS>1 means we are running an evolution with the asymmetric bi-

cone, we need a di↵erent script to set up the CAD models of these individuals

than for the NSECTIONS=1 (symmetric) case. Additionally, It could also call

“Part B Curved 1.sh” if it is nonlinear. Part (B1) is responsible for running

and setting up simulation PEC.xmacro and its two skeletons, which builds the

antenna, creates the waveform, and queues and runs each simulation.

159



Part (B2) is set up to call “Part B GPU job2 asym array.sh”. This part runs the

ouput.xmacro and its skeleton, which write the XFdtd simulation data to an

output .uan file.

For more information on XFdtd, reference the XFdtd manual. Additionally, Xfdtd

has many new resources that are accessible through their GUI under the “Help” drop-

down menu. To access the XFdtd GUI you will need a VDI as seen in section A.4.

Once you have requested the VDI, open the desktop and select the terminal icon

(second icon) as seen in Fig. A.3. Enter “module load xfdtd” and then “xfdtd &”.

This should open up the XFdtd GUI as seen in Fig A.4. Select the “help” drop-

down and then “Scripting API documentation” as seen in A.5. This provides more

information on the scripting language.

A.3.1.3 Sub-Bash Script Part (C): XFdtd Output Conversion Code

Part (C), which calls “Part C.sh” is responsible for converting our XFdtd output

format. In order to run AraSim we need to make the files that XFdtd outputs readable

by AraSim. This means converting the .uan files from XF into .dat files that AraSim

can read. This is done in the XFintoARA.py file. Once this is done we move them

into the AraSim directory.

A.3.1.4 Sub-Bash Script Part (D1) and (D2): AraSim Execution

Sub-Bash scripts for parts (D1) and (D2) are responsible for executing AraSim.

AraSim is a neutrino simulation software that simulates the environment the ARA an-

tennas experience in Antarctica when taking data. AraSim generates neutrino events

independent of each other, with interaction point locations chosen with a uniform den-

sity in the ice. For computational ease, neutrinos are generated within a 3-5 km radius
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around the center of a single station for neutrino energies from E⌫ = 1017eV �1021eV ,

with the larger radii used for higher energies. AraSim then performs ray tracing and

attenuation on the signal and calculates what electromagnetic radiation reaches the

station. At the station, the gain and phase data from XF are used to calculate the

sensitivity of the antenna to neutrinos. This value is extracted as an e↵ective sen-

sitive ice volume (called the ’e↵ective volume’). This e↵ective volume is our fitness

measurement, called the fitness score, for all individuals. For more information on

what AraSim does, please see Chapter 3.3.2.2.

Before going into the detail of these scripts, it’s important to note that to run

AraSim, we need to submit jobs in order to fully utilize the computational power of

the supercomputing cluster. To submit a job, a short script is run that contains a

number of parameters for the cluster. Jobs allow the user to specify the number of

cores to use, the number of GPUs to use, and a time limit. You are also more easily

able to run many jobs in parallel, which means we can run multiple simulations at

once instead of waiting for each individual simulation to run before starting the next.

Note that running a program through the command line instead of submitting a job

will work, but it will be significantly slower and may time out before completion. Jobs

allow the cluster to allocate cores and time to users appropriately, so you may have

to wait for a job to start, especially if you are requesting significant computational

power. Please see more about job submissions on the OSC site.. Though this may

seem intimidating, our software is set up to automatically submit AraSim jobs; the

user bares no responsibility in submitting the jobs manually. This, as well as the

remainder of discussions apropos AraSim, is noteworthy information that can assist
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in properly understanding our software for future modifications; however, it is not

essential to starting a run if no modifications are needed.

One more note-worthy mention is that because these jobs take a long time, we have

modified our run so that, for each individual, we break up the number of neutrinos

into smaller jobs and utilize the ability to run simulations in parallel. For example,

if our variable NNT=30,000, making Seeds=10 means that we divide a total of 300k

neutrinos into 10 jobs that will run in parallel; this dramatically speeds up our run

time.

In the rest of this section, we will discuss the two sub-Bash scripts that are re-

sponsible for running the simulation of our antennas in Antarctica using AraSim.

Part (D1) is responsible for running two things: (1) it moves each .dat file into

a folder AraSim can access, while changing it to a .txt, which is what AraSim

reads, and (2) it runs AraSim for each individual and moves the output into the

Antenna Performance Metric folder. It also makes a directory for all errors and out-

put files from AraSim to be dumped. Part (D2) is responsible for telling our loop to

wait until AraSim is finished running. This will check the completed files and make

sure they all appear before moving on to the next part. This checks that both (1) the

jobs finished and (2) that they were successful. If it is unsuccessful, it will resubmit

the job. It does so by using the “grep” command to search the files for segmentation

violations. If it sees one, it resubmits that job. Note that we also submit a job for

the actual ARA bicone during the first generation so it can be compared against in

our run.
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A.3.1.5 Sub-Bash Script Part (E): Fitness Score Generation

Part (E) calls “Part E Asym.sh” if it is linear and “/Loop Parts/Part E/Part E Curved.sh”

if it is nonlinear. Now that AraSim has successfully run, we want to take the data

recorded and extract the fitness scores. The fitness scores determine how well each

specific antenna performed; we can use this information to compare it with other

antennas with di↵erent parameters. This way, we can determine which antenna per-

formed the best. The AraSim data for each generation is concatenated into one

text file, where each AraSim antenna output is separated by a space. This data

is fed into fitnessScores.exe, which will generate an individual fitness score for each

antenna based on the e↵ective volume of ice observed. Finally, gensData.py will ex-

tract useful information from the fitness scores and write to maxFitnessScores.csv

and gensData.csv, which give results about which performed the best.

For NSECTIONS=1 it compiles fitnessFunction ARA.cpp. For NSECTIONS>1

it compiles fitnessFunction ARA Asym.cpp. Also, if we decide to evolve the sep-

aration, we can do so, but only for NSECTIONS=1 and it would compile fitness-

Function ARA Sep.cpp. The software knows which to compile and run based on the

settings indicated in Asym XF Loop.sh. Each of these determines the maximum ef-

fective volume output by AraSim and uses this to figure out which antennas should

be parents for the next generation.

One more thing to note is that this part is also set up to run an radius, length,

theta plotting software, but is not currently functional. This plotting software would

be better served for part (F) and should be transitioned there in the future.
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A.3.1.6 Sub-Bash Script Part (F): Plotting

Part (F) is primarily responsible for running all of our plotting software. It

is called “Part F asym.sh” for the linear case. For the nonlinear case, it is called

“Loop Parts/Part F/Part F Curved.sh”. More specifically, this part plots the fitness

scores of all individuals, in 3D and 2D, of current and previous generations’ scores.

It then sends them to an email address that is set to automatically upload plots to

our Dropbox. This allows easy access to plots as each generation finishes without the

need for OSC access.

A.3.2 Running the PAEA Loop

Now that all of the details of our software have been presented, we can take a look

at how to run the loop; however, before we do we will discuss a few important notes.

Note 1: The process di↵ers for starting a new run versus continuing an old one.

First, let me explain why you would need to pick up an old run. Each time we start

a run, we need to request something from OSC called a Virtual Desktop Interface

(VDI); these allow you to run without needing to forward actions through to your

computer’s terminal. XFdtd has a GUI that cannot be suppressed and, when we run

without a VDI (on the command line, allowing forwarding through to the terminal),

XF runs usually time out or fail; thus, each time we run the loop we have to request a

VDI, which is requested for a set block of time. Once that set block of time ends, the

loop stops. It takes days to weeks to run our software 20+ generations and the more

time we request for a VDI, the longer it takes to get one. So if I ask for, say, 5 hours

of VDI time, I won’t get very far in an evolution, but I will only have to wait for a
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handful of minutes for a VDI request to be granted. On the contrary, if I requested

80 hours for a VDI this could take a longer time for a VDI to open up. This means

that we usually request blocks of time from 5-10 hours when we run and when the

VDI ends, the run stops.

Because our runs will stop dozens of times before completing, we have to restart

the run often. This is important because the way we start a run and continue a run

is slightly di↵erent. This will be explained in more detail later in this section.

Note 2: Watch our instructional video for running the PAEA loop

Though this section will be going through all of the contents in detail, you should

also utilize our instructional video, as it comes with visual aids for guiding you. Be-

fore you watch it, note that some things are now out of date. First, we are o�cially

using slurm now, which is mentioned in the video when they request an interactive job

(instead of a VDI). Please pay close attention to not utilize the batch job command

and instead request a VDI (which is explained in Appendix A.3.2.2).

Second, we no longer apply a penalty for an antenna exceeding the borehole size.

In the video, it mentioned that we have two fitness scores: (1) the e↵ective volume

from AraSim, and (2) the e↵ective volume for each individual with penalties for an-

tennas that are too large. We no longer do this; instead we restrict the antennas so

that they are not produced at sizes larger than the borehole. This means the reg-

ular e↵ective volume coming out of AraSim is the final fitness score of each individual.

Note 3: We are not using the database.
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Third, make a special note that the database is not currently set up for any of

the runs we are currently doing (asymmetric, non-linear, and AREA). If you were to

accidentally activate this in the main Bash script variables, it would not be e↵ective;

that database does not exist.

In the rest of the section, we are going to show you how to run the loop. This is

specific to OSC Connolly group users; however, I will add as much detail as possible

so those hoping to follow along can understand our reasons for running the code the

way we do.

A.3.2.1 Step 1: Setting your Variables

As I mentioned, the process in starting a new run versus continuing a previous run

di↵ers. Below gives information apropos both scenarios. Please read and understand

both methods, as they will both be pertinent to executing a run.

Starting a brand new run: Before starting the loop for the first time, you need

to open up the main Bash script (Asym XF Loop.sh) and check your vari-

ables. If you are starting a new run, you need to change the run name to

Name YYYY MM DD RunDetails. For example:

Julie_2021_09_19_NonlinearTest

Note that usually we run a total of 300k neutrinos divided up into 10-20 seeds

and set runs for 50+ generations. Remember that you can always end a run

early, but it’s di�cult to restart if you completed all the generations assigned

in this variable and want to keep going. For the time being we run at exp=18

and NPOP of 50.
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Continuing a previous run: In this case the run has already been initialized, but

the VDI has ended. You should check where the save-state recorded the last

completed state to be by looking at savestate.txt. This can be found in:

1 /users/PAS0654/osu9348/BiconeEvolutionOSC/BiconeEvolution/
,! current\_antenna\_evo\_build/XF\_Loop/Evolutionary\_Loop/
,! saveStates

There should be a file called Name YYYY MM DD RunDetails.savestate.txt,

named after your variable RunName. The three numbers in this file are the

generation, state, and individual (in this order). If this looks correct and you

see data correctly written from the state before this, you can leave everything

alone. If this looks incorrect and you need to move back to an earlier state,

you can do so by changing the “state”. Note that state=0 refers to part (A),

state=1 refers for part (B1), etc.

If you need to jump back a generation, this is a little bit more complicated.

In this case, you will need to change both the state and replace the latest

generationDNA.csv and fitnessScores.csv files in the Generation Data/ directory

with the ones from the generation you are stepping back to. For example, if

you are on generation 10 and want to step back to generation 9, you will need

to edit the save-state file to revert the generation to 9, as well as replacing

generationDNA.csv and fitnessScores.csv in Generation Data with the text in

9 generationDNA.csv and 9 fitnessScores.csv.

In practice, there are cases where this is excessive (though not harmful). For

example, if you have not progressed beyond the AraSim part (Part D) of genera-

tion 10, then the new fitnessScores.csv file hasn’t been created yet. Nevertheless,

it is good practice to follow these same steps any time you need to step back.
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Stepping back is most complicated if you have finished AraSim in the current

generation and want to step back to the previous generation to a point before

AraSim.

Note that the XF portion (Part B) automatically checks if the files it is supposed

to create have already been created and removes them if so, meaning that there

is no adjustment needed to be made to the files in the XF directory. Once you

have done this, you can proceed to the next step.

Another important note: never change variables mid-run. If you want to change

any variables, you will have to start a new run.

A.3.2.2 Step 2: Requesting a VDI

To request a VDI, visit the OSC OnDemand VDI page. Once you log in, you

should see a screen similar to Fig. A.6. You can then request the number of hours

needed for the VDI and hit “launch”. You should then see a virtual desktop open

up. In order to run these scripts, we now have to access the terminal. On the bottom

of the screen, there is a terminal icon as seen in Fig A.7. Click on that icon. This

should pull up the terminal. You are now ready to start the software!

As a quick note, it’s common practice in our group to share your VDI with the

group via our VDI links Slack channel. Once the link is shared, anyone can click

on it and view the terminal and, based on the outputs hitting terminal, determine

how the run is doing. To generate a shareable VDI link, you can click the “View

Only(Share-able Link)” button on the VDI launch screen as seen in Fig A.8.
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A.3.2.3 Step 3: Starting the Script

Starting the script is fairly straight forward. Once you have the VDI termi-

nal open, navigate to the proper directory using GE60. You should now see the

Asym XF Loop.sh script and can run it to begin the loop by using the command

“./Loop Scripts/Asym XF Loop.sh”.

Note when using the terminal through the VDI to start a run, you no longer need

to use the ”ssh” login command (from section A.2.2); it is already logged into OSC.

The ”ssh” command used for remote login is for logging in to OSC directly from your

terminal on your home computer and is needed when making software edits. VDIs are

necessary for operations that require more computing power, which is not necessary

for modifying code (only for running it).

Once the loop starts, it spits out the save-state to the terminal. Check it and

make sure it is correct and then press any key. You only need to do this when you

are starting a brand new run or restarting a run that is a handful of generations

in but ended due to the VDI wall-time ending, not every generation. This is just

cross-checking the save-state.

Ignore all of the pop-ups until it gives you the pop-up in Fig. A.9. You need to

select “no.” You only need to do this for the first generation when you start a new

run or restart an existing run.

Note that sometimes XF will show an error saying XF is not responding, as seen

in Fig. A.10. You should not click “wait” or “force quit.” This is a nonsense error

and should be ignored.

You are going to see lots of things outputting to your terminal, some with errors.

This is normal. Some of these errors are nonsense and should be cleaned up in
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the future. While we wait for those errors to be cleaned up, we can tell if errors are

concerning based on the data. You should always be checking the outputs throughout

runs.

As a note, as AraSim is running you should see “waiting for AraSim to finish. . . ”

many times and it will not update super frequently. Please be patient; the loop is

not stuck. AraSim takes a long time. You can always check the AraSim output and

error files. The error files are in

1 /fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/
,! current_antenna_evo_build/XF_Loop/Evolutionary_Loop/
,! Run_Outputs/THENAMEOFYOURRUN/GENNUMBER_AraSim_Errors

and the output files are in

1 /fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/
,! current_antenna_evo_build/XF_Loop/Evolutionary_Loop/
,! Run_Outputs/THENAMEOFYOURRUN/GENNUMBER_AraSim_Outputs

Note that GENNUMBER is the generation you are currently on. For example, if

this is the first generation it would be

1 /fs/ess/PAS1960/BiconeEvolutionOSC/BiconeEvolution/
,! current_antenna_evo_build/XF_Loop/Evolutionary_Loop/
,! Run_Outputs/THENAMEOFYOURRUN /0 _AraSim_Outputs

“THENAMEOFYOURRUN” should be replaced with the actual name of your

run that you set as the variable “RunName” in the main bash script.

After AraSim completes, the e↵ective volume of every AraSim run for every in-

dividual will be printed to terminal, as well as other details. You don’t need to do

anything with this. You’ll see plots pop up and disappear quickly; those plots are

sent directly to our group DropBox. Once you have made it this far, congrats; you’ve

made it through one generation! The code should now run on it’s own until the VDI

wall-time ends. Once it ends, you’ll need to request another VDI to continue the run
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using the same command used to begin it (./Loop Scripts/Asym XF Loop.sh). Make

sure you are checking your results often, and you are good to go!

A.4 The AREA Software

In this section, we will break down the AREA software. As mentioned in sec-

tion 3.5, this loop does not utilize XFdtd, since we are evolving the gain patterns as

our individuals. For details on what to expect in the software loop, see Fig. 3.33. To

run this package, you will need the AREA software and AraSim only.

A.4.1 Bash Script

GA controller job.sh is the main Bash script. This one does not run like the

PAEA loop, as it is not separated into additional Bash scripts that are run by this

one. Instead, all software is run directly from this script. In this section, we will

break down what the Bash script does for the AREA project.

First, it runs the GA; more specifically, it runs the executable named “GA”. It is

important to note that the executable is created from the GA code, which is called

ga.cpp. The code ga.cpp exists in /AREA/GA/. It is incredibly important that you

recompile ga.cpp any time you make edits to the GA and that you save the executable

as the name “GA”; otherwise, this will not run properly. The command to recompile

the GA after edits is “g++ -o (name-for-executable) source.cpp”; thus “g++ -o GA

ga.cpp” would be the command to compile it.

Next, it submits the AraSim jobs via another sbatch (this one is called within the

Bash script). The job submission script is called “oscRun.sh”. Similar to the PAEA

scripts, the Bash script will wait for AraSim jobs to finish by making sure all of the

output files have been written properly (flag files).
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Note, you do not need a VDI to run this loop since XFdtd isn’t being used

anymore. VDIs were used for loops utilizing XFdtd, because we were unable to

suppress its GUI.

Finally, the bash script runs a script called stringReplacement2.py, which concate-

nated all of the AraSim outputs for each individual. Remember that we have multiple

AraSim outputs for one individual due to this SEEDS variable used to divide up the

AraSim run.

Notable variables from the Bash script (GA controller job.sh):

RunName The RunName works the same in this script as it did in the bicone code.

The RunName should include your name, the date, and a detail apropos the

run so it can be identified later.

SEEDS Seeds work the same as in the bicone script. This divides the AraSim jobs

up so that we can run more jobs with fewer neutrinos in order to not drastically

increase our run time by adding more neutrinos or by increasing our error by

lowering the number of neutrinos thrown.

#SBATCH -t 00:00:00 This sets the amount of time requested for the sbatch job

for the loop to run. Note that this is di↵erent from the AraSim jobs. More

details are below. This is an OSC-specific variable.

#SBATCH -A PAS0654 You want to set this for whatever project space you are

on with OSC. If you are on PAS1960, it should be changed as such. This is an

OSC-specific variable.

USER=$ After the $ you want to put your OSC user name.
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GAPATH This is the path where the GA exists. It is in \AREA\GA; however,

if you are running on OSC you’ll need the information from the full path, i.e.

\users\PAS1960\rolla\AREA\GA.

ARAPATH This is the path where your AraSim is installed. Note that you will

need to install AraSim if you are not running on OSC as a part of the Connolly

research group; however, if you are with the Connolly research group, we already

have versions installed that you can utilize on PAS1960, though you are also

welcome a version on your user for running AREA.

MAINPATH This is the path where the main loop exists, i.e. \AREA\, or on

OSC\users\PAS1960\username\AREA\

See section A.3.1 for further details on the variables listed. It is worth noting that

the RunName directory gets made and saved in

users\PAS1960\username\AREA\GA\Runs\RunName\

where RunName is what you call the variable above and username is your personal

OSC username.

Notable variables from setup.txt:

NNU You also need to check the setup.txt file for AraSim located in \AREA\setup.txt.

This is the file that is read into AraSim to determine the details for the start of

the run. You do not see this with the PAEA bicone code because this is set in

the main Bash script, and that is passed to setup.txt prior to AraSim running;

however, for AREA, our software is not as advanced at the moment and this

needs to be done manually. To do so, you can open setup.txt with an editor and
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look at the variable called NNU. Remember that NNU indicated the number

of neutrinos thrown for each job. So if SEEDS=4 and NNU=10000, the total

number of neutrinos thrown for one individual will be 40000.

Notable variables when starting the run and passing in flags: The following are

variables the Bash script needs to be defined via flags set at the command line, not

edited directly in the Bash script. This means that the Bash script expects values to

be given for these variables; however, instead of wanting you to declare them in the

script, they are passed via the command prompt along with the command executing

the code. With these variables passed as flags, it should look like this: “sbatch

–export=ALL,A=1,B=1,C=1,D=1,E=1,F=10 GA controller job.sh”

A This is the number of individuals you want run through roulette cross-over.

B This is the number of individuals you want run through roulette mutation.

C This is the number of individuals you want run through tournament cross-over.

D This is the number of individuals you want run through tournament mutation.

E This is to pass the number of generations you want to this evolution to run for.

Remember that it’s always better to declare more generations you’ll need and

end the run early than to have to restart a run that has completely concluded.

F This is responsible for telling the script what generation we are on. This is a

simplified version of the save-state from the PAEA bicone software. Here you

can only jump back a generation, not a single step in the generation. If you

are doing a brand new run, you will have this at 0. If you are picking up a run

that has ended before the full number of generations have concluded, you will
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put the number for the generation you want to start on and it will restart from

the first part of the loop in that generation. Reasons for needing to continue a

run that has stopped is if the wall-time is reached on the sbatch job you have

submitted for the loop. Don’t forget that our first generation starts at 0.

We know what each of those are from the following line in the main Bash script:

1 # Input arguments for this controller script are:
2

3 # \$1 = Roulette cross -over
4 # \$2 = Roulette mutation
5 # \$3 = Tournament cross -over
6 # \$4 = Tournament mutation
7 # \$5 = number of generations to run
8 # \$6 = index number of the starting generation , 0 for a new run

So, if you wanted to run, say, 50 individuals, you would make sure that the sum of

all of the numbers passed into A, B, C, D are 50. For example, you could have 25

individuals go through roulette cross-over, 8 through roulette mutation, 9 through

tournament cross-over, and 8 through tournament mutation, which equates to 50

total individuals. Now let’s say you decided the number of generations to be 100

(variable E), and you are starting on the first generation (variable F=0). Your line

to run the software with these numbers passed in to satisfy those variables would be:

sbatch –export=ALL 25, 8, 9, 8, 100, 0 GA controller job.sh

A.4.2 Running the AREA Loop

Once you modify the variables listed in the last section, you are ready to run. If

you are familiar with the PAEA loop, there are a few di↵erences worth noting:

(1) Because this loop does not utilize XFdtd, we don’t need to run using a VDI.

(2) In order to make sure we don’t time out, we don’t use ./GA controller job.sh.

Instead, we submit it as a job at the command line by using the sbatch command
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(you’ll see this in just a moment). We don’t need to worry about OSC timing us out

with PAEA because we are running using a VDI; similar to sbatch jobs, this times

out when the wall-time (requested job time) is met.

Now, for starting the run, after all of the variables have been checked in both

GA controller job.sh and setup.txt, go to the command prompt and enter the follow-

ing line with the proper variables/flags for A, B, C, D, E, and F:

“sbatch –export=ALL,A=1,B=1,C=1,D=1,E=1,F=10 GA controller job.sh”.

Remember that you should be checking over the results frequently throughout

the run. You can check them by looking at the slurm output files labeled “slurm-

runid#.out”. These files contain everything that would be written to the terminal

throughout the run but are saved to this file instead since it is run as a job submission.

To determine the run ID, you can type “squeue -u OSCusername”, where “OSCuser-

name” is your actual OSC username. This will spit out details of the job, including

the job ID. Additionally, you can check the AraSim files and outputs by going into

the /AREA/GA/Runs/RunName/gen #/ directory and looking at the “temp” and

“child” files.

It’s also important to note that if an AraSim run has an issue, it is handled di↵er-

ently for PAEA and AREA. Instead of the script looking for segmentation violations

and resubmitting failed jobs (as done in PAEA code), the AREA code waits for flag

files to be written before moving on. If the files are not written, it will not move to the

next part of the loop and you will see “waiting for the first batch of jobs to complete”
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written in the slurm file continuously without moving on to any other output. In this

case, you will need to resubmit that generation.

Finally, it’s worth noting that the AREA software is less developed than PAEA.

It requires you to monitor if AraSim fails instead of it flagging the segmentation

violations and resubmitting the jobs. Additionally, it requires the user to modify the

setup.txt file for AraSim and does not allow you to jump back to stages in the loop

using the save state (only full generations). This is something we will be developing

shortly. If you are looking at running this, please keep up to date on this section,

which will be added to the AREA and PAEA GitHub repositories soon.
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Figure A.1: Evolutionary Loop software breakdown, which is all run in this order by
a Bash script.
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Figure A.2: Map of the function of the main Bash script.

Figure A.3: VDI Terminal
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Figure A.4: XFdtd GUI

Figure A.5: XFdtd Help Menu
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Figure A.6: VDI Request screen.

Figure A.7: Virtual desktop terminal found at the bottom center of the desktop.

Figure A.8: VDI launch screen with the VDI share-able link.
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Figure A.9: This is an expected popup from XF that happens each time you start a
new run or restart an existing run.

Figure A.10: Error given by XF.
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Appendix B: Classification Algorithm Terminology

There are a number of definitions that are important for understanding the output

of classification algorithms that can be derived from the confusion matrix. Some of

these definitions are presented below. In the case of this analysis, a positive (1) is a

AraSim simulated neutrino event, and a negative (0) is a background event.

Positive count (P): the actual number of positive cases.

Negative count (N): the actual number of negative cases.

True Positive (TP): The number of correctly identified positive cases.

False Negative (FN): The number of positive cases, incorrectly identified as neg-

ative. This is called a Type I Error.

True Negative (TN): The number of correctly identified negative cases.

False Positive (FP): The number of negative cases, incorrectly identified as posi-

tive. This is called a Type II Error.

Sensitivity or true positive rate (TPR): The rate of positive events correctly

identified: TPR = TP
P . Also called the recall or hit rate.
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Specificity or true negative rate (TNR): The rate of negative events correctly

identified: TNR = TN
N . Also called the selectivity.

Precision or positive predictive value (PPV): The ratio of correct positive pre-

dictions to all positive predictions: PPV = TP
TP+FP .

Negative predictive value (NPV): The ratio of correct negative predictions to

all negative predictions: NPV = TN
TN+FN .

False Negative Rate (FNR): The ratio of false negatives to total positives:

FNR = FN
P .

False Positive Rate (FPR): The ratio of false negatives to total negatives:

FPR = FP
N .

Accuracy: is the total number of correctly identified events over the total number

of events: A = TP+TN
P+N

Another important term that aims to give a holistic evaluation of the model is

the F1 Score. The F1 Score is the harmonic mean of the precision and recall. The

F1 score ranges from 0 when there is completely incorrect precision or recall, to 1 for

perfect precision and recall. teh F1 Score is given by

F1 = 2
PPV ⇥ TPR

PPV + TPR
(B.1)

which is equivalent to

F1 =
2TP

2TP + FP + FN
(B.2)
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Appendix C: How to run Karoo GP

For a complete description of downloading and running Karoo GP, see the user

guide and source code available on GitHub.

In order to run the classification mode of Karoo GP, the data must be provided in

a comma-separated values (CSV) file with a precise format. Each row describes one

event or sample, with the first row containing the column names. The first columns

contain descriptive variables. The next columns contain constants. These are input

by naming the columns the numeric value of the constant and inputting zero for all

rows. For this analysis, constants of 1 through 9 were used. Since the constants

can interact within a tree, this allows for a wide range of constant terms. Finally, a

column labeled “s” indicates the solution column. The value of this column is a 0

for group 0 or a 1 for group 1. Karoo GP does allow more than two groups, which

would take subsequent integer values, although this feature was not utilized in this

investigation. An example data set is presented in Tab C.1.

In Tab. C.1, the first four columns contain the descriptive variables a, b, c, and

d. The next five columns contain the constants 1 through 5. Finally, the last column

contains which group the individual row belongs to. In this case, rows 2, 3, and the

final row belong to Group 0, and rows 1 and 4 belong to Group 1.

185



Table C.1: Example data structure for a Karoo GP run.

a b c d 1 2 3 4 5 s
5.5 -3.0 240 0.05 0 0 0 0 0 1
6.2 2.7 360 0.09 0 0 0 0 0 0
3.1 1.5 189 0.2 0 0 0 0 0 0
2.8 4.1 125 0.4 0 0 0 0 0 1
...
7.8 -8.0 388 -0.07 0 0 0 0 0 0

The simplest way to run Karoo GP after installation is by inputting the following

line in the terminal.

python3 karoo_gp.py filepath/data_filename.csv

This begins the Karoo GP interface and loads the data. Note that running the

above line without a file allows you to learn Karoo GP with the built-in examples.

The first thing Karoo GP does is divide the data into a training and a testing sample.

Based on industry standards, the training sample consists of 80% of the data, with

the testing containing the remaining 20%.

Table C.2: Initial user-inputted parameters to run Karoo GP.

Parameter Values Default

Mode (or Kernel) Classification, Regression, Classification
Matching, Weighted, Play

Tree Type Full, Grow, Ramped Ramped
Depth of initial population 3 - 10 3
Maximum tree depth 3 - 10 3
Minimum number of nodes 3 or larger 3
Number of individuals 10 -1000 100
Number of generations 1 - 100 10
Number of generations 1 - 100 10
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Next, Karoo GP asks the user to define a number of GP parameters presented

in the Tab C.2. The options describing trees and populations give the user valuable

control over the possible solution space and allow for an exploration of possible un-

derfitting or overfitting. If the depth of the initial population is too large, the GP

will struggle to not overfit because the starting individuals will have many terms. If

the depth is too small, it may take longer for the GP to find an adequate solution,

if at all. A similar challenge is present with the maximum tree depth. Consequently,

the program should be run with di↵erent values of this parameter, to find a solution

with the smallest depth to reduce the possibility of overfitting. The minimum num-

ber of nodes allows the user to restrict how simple the trees can be. In general, this

should remain low to prevent overfitting and elitism in the GP. Finally, the number of

trees and the number of generations are self-explanatory. More trees allow for greater

genetic diversity but requires more computational power. After the set number of

generations is complete, Karoo GP allows the user to add more generations, so it is

useful to run in increments of 10 while exploring parameter settings and testing how

many generations it takes for the GP to converge. Note that all of these parameters

can be entered in the command line when starting Karoo GP; see the user manual

for more details [107].

Once the run is started, Karoo GP will display various information based on the

setting selected by the user. When the chosen number of generations is completed,

the highest-scoring individuals are displayed with the fitness score calculated from

the training data set. Note this can be a little confusing, as the presented array only

shows the highest scoring tree up to that individual. For example, Individual 1 will

always appear because up to that point, it is always the highest scoring individual.
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The next tree presented is the next individual who has a fitness score higher or equal

to individual 1, and so on. So for the output:

1 8 trees [1 3 8 17 37 67 72 85] offer the highest fitness scores.

Tree 85 has the absolute highest score from the population, and the earlier trees

listed could only be equal or worse.

At this point, the user is able to perform a number of actions, of which I will only

describe a few. Of particular note, the “l” command lists the actual equations of the

highest fitness score individuals that were output at the end of the generation. The

next crucial command is “e”, which evaluates the individual against the internal test

data and presents the corresponding confusion matrix. Since the training data is used

for the evolution process, it is important to validate the results of the run with the test

data. You can also continue the run with more generations using the “add” command.

In addition to these commands, you can adjust more advanced parameters such as the

ratio of selection methods and genetic operators. The user may end the run with the

“q” command, at which point Karoo GP saves the population information to various

CSV files.
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Appendix D: Smith Chart

Presented on the following page is a full Smith chart for reference.
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Figure D.1: Template from [89].
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