| |
ID |
Date |
Author |
Type |
Category |
Subject |
Project |
|
|
17
|
Sat Mar 18 17:05:09 2017 |
Amy Connolly | Write-ups | Analysis | Effect of Phase Center Offsets in LCP/RCP Correlation Maps | ANITA |
This is a writeup I worked on last Fall, arguing that even if we have phase center offsets between H and V, our L and R maps should still show a good reconstruction. |
| Attachment 1: LR.pdf
|
| Attachment 2: LR.tex
|
\documentclass[11pt]{article}
\usepackage{graphicx}
\usepackage{epstopdf}
\usepackage{mathrsfs}
\usepackage{amsmath}
\usepackage{subfigure}
\usepackage{wrapfig}
%\usepackage{mlineno}
%\usepackage{color}
\setlength{\textwidth}{16.58cm}
\setlength{\textheight}{22.94cm}
\setlength{\headheight}{0pt}
\setlength{\headsep}{0pt}
\setlength{\oddsidemargin}{-0.04cm}
\setlength{\topmargin}{-0.04cm}
\renewcommand{\baselinestretch}{1.0}
\includeonly{}
\usepackage{indentfirst}
\usepackage{url}
\usepackage{amsmath}
\usepackage{cite}
%\usepackage[square, comma, sort&compress]{natbib}
\begin{document}
\begin{center}
{\Large
Effect of Phase Center Offsets in LCP/RCP Correlation Maps
}
~\\
~\\
\end{center}
\section{Defining H/V/LCP/RCP Waveforms}
Waveform in the vertical polarization. The $n$ index represents antenna number and the $i$ index is for time bin.
\begin{equation}
\label{eq:vwaveform}
v_n(t_i) = \sum_k e^{-j \omega_k t_i} V(\omega_k) \Delta \omega
\end{equation}
Now horizontal polarization, giving all of the H-pol phase centers a time offset relative to the V-pol phase centers.
\begin{equation}
\label{eq:hwaveform}
h_n(t_i) = \sum_k e^{-j \left( \omega_k t_i + \omega_k t_0 \right) } H(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:rwaveform}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) + j h(t_i) \right]
\end{equation}
\begin{equation}
\label{eq:lwaveform}
\ell_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) - j h(t_i) \right]
\end{equation}
Substituting Eqs.~\ref{eq:vwaveform} and ~\ref{eq:hwaveform} into Eqs. ~\ref{eq:rwaveform} and ~\ref{eq:lwaveform}:
\begin{equation}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_kt_i} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
\section{Cross-Correlations with LCP/RCP Waveforms}
Now consider two antennas, and antenna 1 has a delay $T$ with respect to 2. Then,
\begin{equation}
r_1(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k t_i} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
And since
\begin{equation}
\label{eq:vwaveform}
v_2(t_i) = \sum_k e^{-j \omega_k (t_i+T)} V(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:hwaveform}
h_2(t_i) = \sum_k e^{-j \left[ \omega_k (t_i+t_0+T) \right] } H(\omega_k) \Delta \omega
\end{equation}
then
\begin{equation}
r_2(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k (t_i+T)} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
Cross-correlating the RCP waveforms from antennas 1 and 2 ($r_1$ and $r_2$), and ignoring the normalization factor in the denominator for now, the get the following as a function of delay $\tau$ between the two RCP waveforms:
\begin{equation}
\label{eq:C12rr}
C^{rr}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ r_1(t_i) r^*_2 (t_i+\tau)
\end{equation}
where the sum is over the region where the waveforms overlap for a given $\tau$.
Then substituting $r_1(t_i)$ and $r_2(t_i+\tau)$ into Eq.~\ref{eq:C12rr},
\begin{multline}
C^{rr}_{12}(\tau) = \dfrac{1}{2} \left[ \sum_{k_1} \Delta \omega e^{-j \omega_{k_1} t_i} \left[ V(\omega_{k_1}) + j e^{-j\omega_{k_1} t_0} H(\omega_{k_1}) \right] \right] \times \\
\left[ \sum_{k_2} \Delta \omega e^{+j \omega_{k_2} (t_i+T+\tau)} \left[ V(\omega_{k_2}) + j e^{-j\omega_{k_2} t_0} H(\omega_{k_2}) \right] \right]
\end{multline}
Collecting terms, we get:
\begin{multline}
C^{rr}_{12}(\tau) = \sum_{k_1} \sum_{k_2} (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2}) -j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) +j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}
Likewise the LCP waveforms for antennas 1 and 2, where again antenna 1 has a delay $T$ with respect to 2:
\begin{equation}
\ell_1(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k t_i} \left[ V(\omega_k) - j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
\begin{equation}
\ell_2(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k (t_i+T)} \left[ V(\omega_k) - j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
Then,
\begin{equation}
\label{eq:C12rr}
C^{\ell\ell}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ \ell_1(t_i) \ell^*_2 (t_i+\tau)
\end{equation}
\begin{multline}
C^{\ell \ell}_{12}(\tau) = \sum_{k_1} \sum_{k_2} (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2}) +j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) -j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}
\end{document}
|
|
|
20
|
Thu Mar 23 20:12:20 2017 |
J. C. Hanson | Write-ups | Analysis | Latest near-surface ice report | |
Hello! See the attached report relating the compressibility of firn, the density profile, and the resulting index of refraction profile. The gradient of the index of refraction profile determines the curvature of classically refracted rays. |
| Attachment 1: NearSurface_IceReport.pdf
|
|
|
23
|
Tue Apr 4 17:41:24 2017 |
Kaeli Hughes | Write-ups | Analysis | Senior Thesis Draft v4 | ANITA |
Here is my senior thesis so far. If you have time, please read through it and let me know if you have any comments! |
| Attachment 1: Senior_Thesis_Draft_0407.pdf
|
|
|
29
|
Thu Apr 20 21:26:26 2017 |
Amy Connolly | Thesis/Candidacy | Analysis | Amy's thesis | Other |
Just in case anyone wants to read my thesis. :) I pointed Brian D. to it today to read about how to set limits. The limits included systematic uncertainties too, which is standard in particle physics but we don't do that yet (but we should).
|
| Attachment 1: fermilab-thesis-2003-45.pdf
|
|
|
34
|
Wed Jul 19 10:45:00 2017 |
Amy Connolly submitting Hoover's thesis | Thesis/Candidacy | Analysis | Stephen Hoover's ANITA-I thesis | ANITA |
|
| Attachment 1: hoover_dissertation.pdf
|
|
|
37
|
Wed Aug 9 13:52:32 2017 |
Oindree Banerjee | Thesis/Candidacy | Analysis | Sam Stafford PhD thesis | ANITA |
|
| Attachment 1: thesis_stafford.pdf
|
|
|
42
|
Wed Mar 7 12:30:54 2018 |
Oindree Banerjee | Refereed Papers | Analysis | ANITA-3 Diffuse Neutrino Search Paper Arxiv Submission March 7 2018 | |
Attached is what was submitted to arxiv for the first time
This paper has descriptions and results from three complementary analyses, Analysis A, B and C
Analysis C is the OSU binned analysis, and this is the first time that this new analysis is being published (other than theses)
|
| Attachment 1: A3_diffuse_neutrino_paper_arxiv1.pdf
|
|
|
43
|
Thu Mar 22 16:45:25 2018 |
Brian Dailey | Thesis/Candidacy | Analysis | Brian Dailey's PhD Thesis | ANITA |
Brian Dailey's PhD Thesis. |
| Attachment 1: brian_dailey_thesis_final.pdf
|
|
|
45
|
Wed Aug 1 21:51:08 2018 |
Brian Clark | Refereed Papers | Analysis | ARA Solar Flare Paper | ARA |
ARA solar flare paper submitted to the journal.
Link: https://arxiv.org/abs/1807.03335
|
| Attachment 1: observation-reconstructable-radio_submit.pdf
|
|
|
46
|
Mon Sep 17 22:31:04 2018 |
Brian Clark | Write-ups | Analysis | Units of the Fourier Transform | |
Quick summary of the units of the Fourier Transform. |
| Attachment 1: FT.pdf
|
| Attachment 2: FT.zip
|
|
|
55
|
Thu Jun 20 14:42:13 2024 |
Jason Yao | Write-ups | Analysis | ANITA elevation angle | |
Attached is the note that Ben Strutt sent me.
It contains the derivation of equation 8.3 in his dissertation.
In particular, note that the elevation angle corresponds to the ! |
| Attachment 1: ben_strutt_notes.pdf
|
|
|
Draft
|
Fri May 19 12:47:58 2017 |
Kai Staats | | | Kai Staats masters thesis | Other |
|