Updates and Results Talks and Posters Advice Ideas Important Figures Write-Ups Outreach How-To Funding Opportunities GENETIS
  Papers and Write-ups, Page 3 of 3  ELOG logo
New entries since:Wed Dec 31 19:00:00 1969
  ID Date Author Type Categorydown Subject Project
  17   Sat Mar 18 17:05:09 2017 Amy ConnollyWrite-upsAnalysisEffect of Phase Center Offsets in LCP/RCP Correlation MapsANITA

This is a writeup I worked on last Fall, arguing that even if we have phase center offsets between H and V, our L and R maps should still show a good reconstruction.

Attachment 1: LR.pdf
Attachment 2: LR.tex
\documentclass[11pt]{article}

\usepackage{graphicx}
\usepackage{epstopdf}
\usepackage{mathrsfs}
\usepackage{amsmath}


\usepackage{subfigure}
\usepackage{wrapfig}
%\usepackage{mlineno}
%\usepackage{color}
\setlength{\textwidth}{16.58cm}
\setlength{\textheight}{22.94cm}
\setlength{\headheight}{0pt}
\setlength{\headsep}{0pt}
\setlength{\oddsidemargin}{-0.04cm}
\setlength{\topmargin}{-0.04cm}
\renewcommand{\baselinestretch}{1.0}


\includeonly{}
\usepackage{indentfirst}
\usepackage{url}
\usepackage{amsmath}
\usepackage{cite}
%\usepackage[square, comma, sort&compress]{natbib}
\begin{document}

\begin{center}
{\Large
Effect of Phase Center Offsets in LCP/RCP Correlation Maps
}
~\\
~\\
\end{center}

\section{Defining H/V/LCP/RCP Waveforms}
Waveform in the vertical polarization.  The $n$ index represents antenna number and the $i$ index is for time bin.
\begin{equation}
\label{eq:vwaveform}
v_n(t_i) = \sum_k e^{-j \omega_k t_i} V(\omega_k) \Delta \omega
\end{equation}
Now horizontal polarization, giving all of the H-pol phase centers a time offset relative to the V-pol phase centers.
\begin{equation}
\label{eq:hwaveform}
h_n(t_i) = \sum_k e^{-j \left( \omega_k t_i + \omega_k t_0 \right) } H(\omega_k) \Delta \omega
\end{equation}

\begin{equation}
\label{eq:rwaveform}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) + j h(t_i) \right]
\end{equation}

\begin{equation}
\label{eq:lwaveform}
\ell_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) - j h(t_i) \right]
\end{equation}

Substituting Eqs.~\ref{eq:vwaveform} and ~\ref{eq:hwaveform} into Eqs. ~\ref{eq:rwaveform} and ~\ref{eq:lwaveform}:
\begin{equation}
r_n(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_kt_i}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}

\section{Cross-Correlations with LCP/RCP Waveforms}
Now consider two antennas, and antenna 1 has a delay $T$ with respect to 2.  Then,
\begin{equation}
r_1(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k t_i}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}

And since
\begin{equation}
\label{eq:vwaveform}
v_2(t_i) = \sum_k e^{-j \omega_k (t_i+T)} V(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:hwaveform}
h_2(t_i) = \sum_k e^{-j \left[ \omega_k  (t_i+t_0+T) \right] } H(\omega_k) \Delta \omega
\end{equation}
then
\begin{equation}
r_2(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k (t_i+T)}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}


Cross-correlating the RCP waveforms from antennas 1 and 2 ($r_1$ and $r_2$), and ignoring the normalization factor in the denominator for now, the get the following as a function of delay $\tau$ between the two RCP waveforms:
\begin{equation}
\label{eq:C12rr}
C^{rr}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ r_1(t_i) r^*_2 (t_i+\tau)
\end{equation}
where the sum is over the region where the waveforms overlap for a given $\tau$.
Then substituting $r_1(t_i)$ and $r_2(t_i+\tau)$ into Eq.~\ref{eq:C12rr},
\begin{multline}
C^{rr}_{12}(\tau) = \dfrac{1}{2}  \left[  \sum_{k_1}  \Delta \omega e^{-j \omega_{k_1} t_i}  \left[ V(\omega_{k_1}) + j e^{-j\omega_{k_1} t_0}  H(\omega_{k_1}) \right] \right] \times \\
\left[  \sum_{k_2}  \Delta \omega e^{+j \omega_{k_2} (t_i+T+\tau)}  \left[ V(\omega_{k_2}) + j e^{-j\omega_{k_2} t_0}  H(\omega_{k_2}) \right]   \right]
\end{multline}
Collecting terms, we get:
\begin{multline}
C^{rr}_{12}(\tau) = \sum_{k_1}  \sum_{k_2}  (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2})  -j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) +j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}

Likewise the LCP waveforms for antennas 1 and 2, where again antenna 1 has a delay $T$ with respect to 2:
\begin{equation}
\ell_1(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k t_i}  \left[ V(\omega_k) - j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}
\begin{equation}
\ell_2(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k (t_i+T)}  \left[ V(\omega_k) - j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}
Then, 
\begin{equation}
\label{eq:C12rr}
C^{\ell\ell}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ \ell_1(t_i) \ell^*_2 (t_i+\tau)
\end{equation}
\begin{multline}
C^{\ell \ell}_{12}(\tau) = \sum_{k_1}  \sum_{k_2}  (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2})  +j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) -j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}



\end{document}








  20   Thu Mar 23 20:12:20 2017 J. C. HansonWrite-upsAnalysisLatest near-surface ice report 

Hello!  See the attached report relating the compressibility of firn, the density profile, and the resulting index of refraction profile.  The gradient of the index of refraction profile determines the curvature of classically refracted rays.

Attachment 1: NearSurface_IceReport.pdf
  23   Tue Apr 4 17:41:24 2017 Kaeli HughesWrite-upsAnalysisSenior Thesis Draft v4ANITA

Here is my senior thesis so far. If you have time, please read through it and let me know if you have any comments!

Attachment 1: Senior_Thesis_Draft_0407.pdf
  29   Thu Apr 20 21:26:26 2017 Amy ConnollyThesis/CandidacyAnalysisAmy's thesisOther

Just in case anyone wants to read my thesis.  :)  I pointed Brian D. to it today to read about how to set limits.  The limits included systematic uncertainties too, which is standard in particle physics but we don't do that yet (but we should).

 

Attachment 1: fermilab-thesis-2003-45.pdf
  34   Wed Jul 19 10:45:00 2017 Amy Connolly submitting Hoover's thesisThesis/CandidacyAnalysisStephen Hoover's ANITA-I thesisANITA
Attachment 1: hoover_dissertation.pdf
  37   Wed Aug 9 13:52:32 2017 Oindree BanerjeeThesis/CandidacyAnalysisSam Stafford PhD thesisANITA
Attachment 1: thesis_stafford.pdf
  42   Wed Mar 7 12:30:54 2018 Oindree BanerjeeRefereed PapersAnalysisANITA-3 Diffuse Neutrino Search Paper Arxiv Submission March 7 2018 

Attached is what was submitted to arxiv for the first time

This paper has descriptions and results from three complementary analyses, Analysis A, B and C

Analysis C is the OSU binned analysis, and this is the first time that this new analysis is being published (other than theses) 

 

Attachment 1: A3_diffuse_neutrino_paper_arxiv1.pdf
  43   Thu Mar 22 16:45:25 2018 Brian DaileyThesis/CandidacyAnalysisBrian Dailey's PhD ThesisANITA

Brian Dailey's PhD Thesis.

Attachment 1: brian_dailey_thesis_final.pdf
  45   Wed Aug 1 21:51:08 2018 Brian ClarkRefereed PapersAnalysisARA Solar Flare PaperARA

ARA solar flare paper submitted to the journal.

Link: https://arxiv.org/abs/1807.03335

 

Attachment 1: observation-reconstructable-radio_submit.pdf
  46   Mon Sep 17 22:31:04 2018 Brian ClarkWrite-upsAnalysisUnits of the Fourier Transform 

Quick summary of the units of the Fourier Transform.

Attachment 1: FT.pdf
Attachment 2: FT.zip
  55   Thu Jun 20 14:42:13 2024 Jason YaoWrite-upsAnalysisANITA elevation angle 

Attached is the note that Ben Strutt sent me.
It contains the derivation of equation 8.3 in his dissertation.

In particular, note that the elevation angle \theta = + \degree{90} corresponds to the -\hat{z} !

Attachment 1: ben_strutt_notes.pdf
  Draft   Fri May 19 12:47:58 2017 Kai Staats  Kai Staats masters thesisOther
ELOG V3.1.5-fc6679b