| |
ID |
Date |
Author |
Type |
Category |
Subject |
Project |
|
|
24
|
Fri Apr 7 13:08:18 2017 |
J. C. Hanson | Write-ups | Service | Latest SSI proposal | |
Hello! These are notes and information regarding the SSI proposal, which is due in early September. To access the proposal, see my github @ 918particle. I've attached my work as a pdf, but keep in mind we have a long way to go on this document. |
| Attachment 1: notes.pdf
|
|
|
11
|
Tue Jan 24 09:13:11 2017 |
J.C. Hanson | Write-ups | Analysis | Latest Firn/Ice Work | |
see attached. |
| Attachment 1: NearSurface_IceReport.pdf
|
|
|
15
|
Wed Mar 15 17:17:13 2017 |
J.C. Hanson | Refereed Papers | Theory | Latest Askaryan RF emission paper | ARA |
|
| Attachment 1: elsarticle-template.pdf
|
|
|
21
|
Wed Mar 29 11:40:52 2017 |
J. C. Hanson | Refereed Papers | Theory | Latest Askaryan Emission Paper now on arXiv (make sure to look at version 4) | |
https://arxiv.org/abs/1605.04975v4 |
|
|
Draft
|
Fri May 19 12:47:58 2017 |
Kai Staats | | | Kai Staats masters thesis | Other |
|
|
|
49
|
Tue Aug 25 14:01:43 2020 |
Justin Flaherty | Thesis/Candidacy | General | Justin's Candidacy Paper | Other |
|
| Attachment 1: Flaherty_2020_-_Multimessenger_Observations_of_Neutron_Star_Merger_GW170817.pdf
|
|
|
53
|
Mon Apr 4 16:13:57 2022 |
Julie Rolla | Write-ups | Other | Julie's Dissertation (GENETIS + ARA analysis using Karoo) | ARA |
|
| Attachment 1: Julie_Rolla_Dissertation.pdf
|
|
|
Draft
|
Thu Jul 22 10:04:39 2021 |
Jorge Torres | Thesis/Candidacy | General | Jorge's PhD thesis | ARA |
|
| Attachment 1: Thesis_Torres.pdf
|
|
|
52
|
Sat Apr 2 17:57:00 2022 |
Amy | Thesis/Candidacy | General | Jorge Torres dissertation | |
Jorge's dissertation can be found here:
https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1626947923539686
updated link: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?p10_accession_num=osu1626947923539686&clear=10
|
| Attachment 1: Thesis_Torres.pdf
|
|
|
39
|
Thu Feb 8 16:15:55 2018 |
Amy Connolly | Write-ups | General | Jacob Gordon's thesis | ANITA |
|
| Attachment 1: Jacob_Gordon_Thesis_Draft_01-02-18_nearfinal.pdf
|
|
|
30
|
Thu May 4 10:53:57 2017 |
Eugene Hong | Thesis/Candidacy | General | Eugene Hong's Ph.D. Dissertation | ARA |
Here is Eugene Hong's Ph.D. dissertation from 2014.
It concentrates on the ARA Testbed including a diffuse search using 2 years of Testbed data.
Title: Searching for Ultra-high Energy Neutrinos with Data from a Prototype Station of the Askaryan Radio Array |
| Attachment 1: Thesis_-_Eugene_Hong.pdf
|
|
|
17
|
Sat Mar 18 17:05:09 2017 |
Amy Connolly | Write-ups | Analysis | Effect of Phase Center Offsets in LCP/RCP Correlation Maps | ANITA |
This is a writeup I worked on last Fall, arguing that even if we have phase center offsets between H and V, our L and R maps should still show a good reconstruction. |
| Attachment 1: LR.pdf
|
| Attachment 2: LR.tex
|
\documentclass[11pt]{article}
\usepackage{graphicx}
\usepackage{epstopdf}
\usepackage{mathrsfs}
\usepackage{amsmath}
\usepackage{subfigure}
\usepackage{wrapfig}
%\usepackage{mlineno}
%\usepackage{color}
\setlength{\textwidth}{16.58cm}
\setlength{\textheight}{22.94cm}
\setlength{\headheight}{0pt}
\setlength{\headsep}{0pt}
\setlength{\oddsidemargin}{-0.04cm}
\setlength{\topmargin}{-0.04cm}
\renewcommand{\baselinestretch}{1.0}
\includeonly{}
\usepackage{indentfirst}
\usepackage{url}
\usepackage{amsmath}
\usepackage{cite}
%\usepackage[square, comma, sort&compress]{natbib}
\begin{document}
\begin{center}
{\Large
Effect of Phase Center Offsets in LCP/RCP Correlation Maps
}
~\\
~\\
\end{center}
\section{Defining H/V/LCP/RCP Waveforms}
Waveform in the vertical polarization. The $n$ index represents antenna number and the $i$ index is for time bin.
\begin{equation}
\label{eq:vwaveform}
v_n(t_i) = \sum_k e^{-j \omega_k t_i} V(\omega_k) \Delta \omega
\end{equation}
Now horizontal polarization, giving all of the H-pol phase centers a time offset relative to the V-pol phase centers.
\begin{equation}
\label{eq:hwaveform}
h_n(t_i) = \sum_k e^{-j \left( \omega_k t_i + \omega_k t_0 \right) } H(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:rwaveform}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) + j h(t_i) \right]
\end{equation}
\begin{equation}
\label{eq:lwaveform}
\ell_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) - j h(t_i) \right]
\end{equation}
Substituting Eqs.~\ref{eq:vwaveform} and ~\ref{eq:hwaveform} into Eqs. ~\ref{eq:rwaveform} and ~\ref{eq:lwaveform}:
\begin{equation}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_kt_i} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
\section{Cross-Correlations with LCP/RCP Waveforms}
Now consider two antennas, and antenna 1 has a delay $T$ with respect to 2. Then,
\begin{equation}
r_1(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k t_i} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
And since
\begin{equation}
\label{eq:vwaveform}
v_2(t_i) = \sum_k e^{-j \omega_k (t_i+T)} V(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:hwaveform}
h_2(t_i) = \sum_k e^{-j \left[ \omega_k (t_i+t_0+T) \right] } H(\omega_k) \Delta \omega
\end{equation}
then
\begin{equation}
r_2(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k (t_i+T)} \left[ V(\omega_k) + j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
Cross-correlating the RCP waveforms from antennas 1 and 2 ($r_1$ and $r_2$), and ignoring the normalization factor in the denominator for now, the get the following as a function of delay $\tau$ between the two RCP waveforms:
\begin{equation}
\label{eq:C12rr}
C^{rr}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ r_1(t_i) r^*_2 (t_i+\tau)
\end{equation}
where the sum is over the region where the waveforms overlap for a given $\tau$.
Then substituting $r_1(t_i)$ and $r_2(t_i+\tau)$ into Eq.~\ref{eq:C12rr},
\begin{multline}
C^{rr}_{12}(\tau) = \dfrac{1}{2} \left[ \sum_{k_1} \Delta \omega e^{-j \omega_{k_1} t_i} \left[ V(\omega_{k_1}) + j e^{-j\omega_{k_1} t_0} H(\omega_{k_1}) \right] \right] \times \\
\left[ \sum_{k_2} \Delta \omega e^{+j \omega_{k_2} (t_i+T+\tau)} \left[ V(\omega_{k_2}) + j e^{-j\omega_{k_2} t_0} H(\omega_{k_2}) \right] \right]
\end{multline}
Collecting terms, we get:
\begin{multline}
C^{rr}_{12}(\tau) = \sum_{k_1} \sum_{k_2} (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2}) -j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) +j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}
Likewise the LCP waveforms for antennas 1 and 2, where again antenna 1 has a delay $T$ with respect to 2:
\begin{equation}
\ell_1(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k t_i} \left[ V(\omega_k) - j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
\begin{equation}
\ell_2(t_i) = \dfrac{1}{\sqrt{2}} \sum_k \Delta \omega e^{-j \omega_k (t_i+T)} \left[ V(\omega_k) - j e^{-j\omega_k t_0} H(\omega_k) \right]
\end{equation}
Then,
\begin{equation}
\label{eq:C12rr}
C^{\ell\ell}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ \ell_1(t_i) \ell^*_2 (t_i+\tau)
\end{equation}
\begin{multline}
C^{\ell \ell}_{12}(\tau) = \sum_{k_1} \sum_{k_2} (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2}) +j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) -j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}
\end{document}
|
|
|
9
|
Mon Jan 16 09:10:15 2017 |
J.C. Hanson | Write-ups | General | Dissertation of Kamlesh Dookayka (use for ShelfMC guide) | ARA |
See attached. |
| Attachment 1: Kamlesh_thesis_1_0.pdf
|
|
|
16
|
Fri Mar 17 00:25:49 2017 |
Amy Connolly | Write-ups | Theory | Dependence of density of packed snow with depth | ARA |
I had a glaciology day and did my own derivation of rho(z) using the compressibility of packed snow. The conclusions are a bit different from what Jordan found, although similar and greater depths, so I'll be interested to hear what he thinks, or anyone else!
Attached are my writeup, and an interesting paper reporting measurements of compressibility of packed ice.
|
| Attachment 1: mycalc.pdf
|
| Attachment 2: a028622.pdf
|
|
|
40
|
Mon Feb 26 16:38:48 2018 |
Amy Connolly | Thesis/Candidacy | Other | Dawn Williams Thesis | Other |
Dissertation of Dawn Williams. She completed her PhD with David Saltzberg when I was starting my postdoc at UCLA. She worked on GLUE and SalSA. |
| Attachment 1: The_Askar'yan_effect_and_detec.pdf
|
|
|
3
|
Sun Dec 18 23:50:25 2016 |
Amy Connolly | Refereed Papers | Analysis | Constraints on the Ultra-High-Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio Array | ARA |
|
| Attachment 1: elsarticle-template-num.pdf
|
|
|
27
|
Tue Apr 18 12:26:39 2017 |
Oindree Banerjee | Thesis/Candidacy | General | Brian Mercurio PhD thesis from 2009 | ANITA |
Go to link:
https://osu.box.com/s/5pg7cwdwp3jnamjpgxdv0r6axndgsh9p |
|
|
43
|
Thu Mar 22 16:45:25 2018 |
Brian Dailey | Thesis/Candidacy | Analysis | Brian Dailey's PhD Thesis | ANITA |
Brian Dailey's PhD Thesis. |
| Attachment 1: brian_dailey_thesis_final.pdf
|
|
|
31
|
Tue May 16 10:22:41 2017 |
Brian Dailey | Thesis/Candidacy | Theory | Brian D. Candidacy, Neutrino Flavor | ANITA |
Brian Dailey's Candidacy from March 2012. It deals with Neutrino flavors, mostly with oscillations/mixing, interactions, and detection. |
| Attachment 1: Brian_candidacy.pdf
|
|
|
25
|
Tue Apr 11 12:24:27 2017 |
Brian Clark | Thesis/Candidacy | Hardware | Brian Clark's PhD Candidacy Exam: Trigger Thresholds in UHE Astrophysics | |
Here is a link to my candidacy talk
pdf: https://osu.box.com/s/biopkz0gewliadwgm4j4k1tlyaeubj8v
ppt: https://osu.box.com/s/eq90mzffh0iy4kvg0pvf0dhjbm4qj0xl
The paper is attached, including the source tex. |
| Attachment 1: Brian_Candidacy_Paper.pdf
|
| Attachment 2: Brian_Candidacy_Paper_Source_Tex.zip
|