Updates and Results Talks and Posters Advice Ideas Important Figures Write-Ups Outreach How-To Funding Opportunities GENETIS
  Papers and Write-ups, Page 2 of 3  ELOG logo
  ID Date Author Type Category Subjectdown Project
  24   Fri Apr 7 13:08:18 2017 J. C. HansonWrite-upsServiceLatest SSI proposal 

Hello!  These are notes and information regarding the SSI proposal, which is due in early September.  To access the proposal, see my github @ 918particle.  I've attached my work as a pdf, but keep in mind we have a long way to go on this document.

Attachment 1: notes.pdf
  11   Tue Jan 24 09:13:11 2017 J.C. HansonWrite-upsAnalysisLatest Firn/Ice Work 

see attached.

Attachment 1: NearSurface_IceReport.pdf
  15   Wed Mar 15 17:17:13 2017 J.C. HansonRefereed PapersTheoryLatest Askaryan RF emission paperARA
Attachment 1: elsarticle-template.pdf
  21   Wed Mar 29 11:40:52 2017 J. C. HansonRefereed PapersTheoryLatest Askaryan Emission Paper now on arXiv (make sure to look at version 4) 

https://arxiv.org/abs/1605.04975v4

  Draft   Fri May 19 12:47:58 2017 Kai Staats  Kai Staats masters thesisOther
  49   Tue Aug 25 14:01:43 2020 Justin FlahertyThesis/CandidacyGeneralJustin's Candidacy PaperOther
Attachment 1: Flaherty_2020_-_Multimessenger_Observations_of_Neutron_Star_Merger_GW170817.pdf
  53   Mon Apr 4 16:13:57 2022 Julie RollaWrite-upsOtherJulie's Dissertation (GENETIS + ARA analysis using Karoo) ARA
Attachment 1: Julie_Rolla_Dissertation.pdf
  Draft   Thu Jul 22 10:04:39 2021 Jorge TorresThesis/CandidacyGeneralJorge's PhD thesisARA
Attachment 1: Thesis_Torres.pdf
  52   Sat Apr 2 17:57:00 2022 AmyThesis/CandidacyGeneralJorge Torres dissertation 

Jorge's dissertation can be found here:

https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=osu1626947923539686

updated link: https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?p10_accession_num=osu1626947923539686&clear=10

 

Attachment 1: Thesis_Torres.pdf
  39   Thu Feb 8 16:15:55 2018 Amy Connolly Write-upsGeneralJacob Gordon's thesisANITA
Attachment 1: Jacob_Gordon_Thesis_Draft_01-02-18_nearfinal.pdf
  30   Thu May 4 10:53:57 2017 Eugene HongThesis/CandidacyGeneralEugene Hong's Ph.D. DissertationARA

Here is Eugene Hong's Ph.D. dissertation from 2014.

It concentrates on the ARA Testbed including a diffuse search using 2 years of Testbed data.

Title: Searching for Ultra-high Energy Neutrinos with Data from a Prototype Station of the Askaryan Radio Array

Attachment 1: Thesis_-_Eugene_Hong.pdf
  17   Sat Mar 18 17:05:09 2017 Amy ConnollyWrite-upsAnalysisEffect of Phase Center Offsets in LCP/RCP Correlation MapsANITA

This is a writeup I worked on last Fall, arguing that even if we have phase center offsets between H and V, our L and R maps should still show a good reconstruction.

Attachment 1: LR.pdf
Attachment 2: LR.tex
\documentclass[11pt]{article}

\usepackage{graphicx}
\usepackage{epstopdf}
\usepackage{mathrsfs}
\usepackage{amsmath}


\usepackage{subfigure}
\usepackage{wrapfig}
%\usepackage{mlineno}
%\usepackage{color}
\setlength{\textwidth}{16.58cm}
\setlength{\textheight}{22.94cm}
\setlength{\headheight}{0pt}
\setlength{\headsep}{0pt}
\setlength{\oddsidemargin}{-0.04cm}
\setlength{\topmargin}{-0.04cm}
\renewcommand{\baselinestretch}{1.0}


\includeonly{}
\usepackage{indentfirst}
\usepackage{url}
\usepackage{amsmath}
\usepackage{cite}
%\usepackage[square, comma, sort&compress]{natbib}
\begin{document}

\begin{center}
{\Large
Effect of Phase Center Offsets in LCP/RCP Correlation Maps
}
~\\
~\\
\end{center}

\section{Defining H/V/LCP/RCP Waveforms}
Waveform in the vertical polarization.  The $n$ index represents antenna number and the $i$ index is for time bin.
\begin{equation}
\label{eq:vwaveform}
v_n(t_i) = \sum_k e^{-j \omega_k t_i} V(\omega_k) \Delta \omega
\end{equation}
Now horizontal polarization, giving all of the H-pol phase centers a time offset relative to the V-pol phase centers.
\begin{equation}
\label{eq:hwaveform}
h_n(t_i) = \sum_k e^{-j \left( \omega_k t_i + \omega_k t_0 \right) } H(\omega_k) \Delta \omega
\end{equation}

\begin{equation}
\label{eq:rwaveform}
r_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) + j h(t_i) \right]
\end{equation}

\begin{equation}
\label{eq:lwaveform}
\ell_n(t_i) = \dfrac{1}{\sqrt{2}} \left[ v(t_i) - j h(t_i) \right]
\end{equation}

Substituting Eqs.~\ref{eq:vwaveform} and ~\ref{eq:hwaveform} into Eqs. ~\ref{eq:rwaveform} and ~\ref{eq:lwaveform}:
\begin{equation}
r_n(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_kt_i}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}

\section{Cross-Correlations with LCP/RCP Waveforms}
Now consider two antennas, and antenna 1 has a delay $T$ with respect to 2.  Then,
\begin{equation}
r_1(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k t_i}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}

And since
\begin{equation}
\label{eq:vwaveform}
v_2(t_i) = \sum_k e^{-j \omega_k (t_i+T)} V(\omega_k) \Delta \omega
\end{equation}
\begin{equation}
\label{eq:hwaveform}
h_2(t_i) = \sum_k e^{-j \left[ \omega_k  (t_i+t_0+T) \right] } H(\omega_k) \Delta \omega
\end{equation}
then
\begin{equation}
r_2(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k (t_i+T)}  \left[ V(\omega_k) + j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}


Cross-correlating the RCP waveforms from antennas 1 and 2 ($r_1$ and $r_2$), and ignoring the normalization factor in the denominator for now, the get the following as a function of delay $\tau$ between the two RCP waveforms:
\begin{equation}
\label{eq:C12rr}
C^{rr}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ r_1(t_i) r^*_2 (t_i+\tau)
\end{equation}
where the sum is over the region where the waveforms overlap for a given $\tau$.
Then substituting $r_1(t_i)$ and $r_2(t_i+\tau)$ into Eq.~\ref{eq:C12rr},
\begin{multline}
C^{rr}_{12}(\tau) = \dfrac{1}{2}  \left[  \sum_{k_1}  \Delta \omega e^{-j \omega_{k_1} t_i}  \left[ V(\omega_{k_1}) + j e^{-j\omega_{k_1} t_0}  H(\omega_{k_1}) \right] \right] \times \\
\left[  \sum_{k_2}  \Delta \omega e^{+j \omega_{k_2} (t_i+T+\tau)}  \left[ V(\omega_{k_2}) + j e^{-j\omega_{k_2} t_0}  H(\omega_{k_2}) \right]   \right]
\end{multline}
Collecting terms, we get:
\begin{multline}
C^{rr}_{12}(\tau) = \sum_{k_1}  \sum_{k_2}  (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2})  -j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) +j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}

Likewise the LCP waveforms for antennas 1 and 2, where again antenna 1 has a delay $T$ with respect to 2:
\begin{equation}
\ell_1(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k t_i}  \left[ V(\omega_k) - j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}
\begin{equation}
\ell_2(t_i) = \dfrac{1}{\sqrt{2}}  \sum_k  \Delta \omega e^{-j \omega_k (t_i+T)}  \left[ V(\omega_k) - j e^{-j\omega_k t_0}  H(\omega_k) \right]
\end{equation}
Then, 
\begin{equation}
\label{eq:C12rr}
C^{\ell\ell}_{12}(\tau) = \sum_{k^{\prime}} \Delta t ~ \ell_1(t_i) \ell^*_2 (t_i+\tau)
\end{equation}
\begin{multline}
C^{\ell \ell}_{12}(\tau) = \sum_{k_1}  \sum_{k_2}  (\Delta \omega)^2 e^{-j\left[ \omega_{k_1} t_i-\omega_{k_2} (t_i+T+\tau) \right]} \times \\
\left[ V(\omega_{k_1} )V^* (\omega_{k_2})  +j e^{j \omega_{k_2} t_0 } V(\omega_{k_1} )H^*(\omega_{k_2}) -j e^{-j \omega_{k_1} t_0} H(\omega_{k_1}) V^* (\omega_{k_2}) +H(\omega_{k_1}) H^* (\omega_{k_2}) \right]
\end{multline}



\end{document}








  9   Mon Jan 16 09:10:15 2017 J.C. HansonWrite-upsGeneralDissertation of Kamlesh Dookayka (use for ShelfMC guide)ARA

See attached.

Attachment 1: Kamlesh_thesis_1_0.pdf
  16   Fri Mar 17 00:25:49 2017 Amy ConnollyWrite-upsTheoryDependence of density of packed snow with depthARA

I had a glaciology day and did my own derivation of rho(z) using the compressibility of packed snow.  The conclusions are a bit different from what Jordan found, although similar and greater depths, so I'll be interested to hear what he thinks, or anyone else!

Attached are my writeup, and an interesting paper reporting measurements of compressibility of packed ice.

 

Attachment 1: mycalc.pdf
Attachment 2: a028622.pdf
  40   Mon Feb 26 16:38:48 2018 Amy Connolly Thesis/CandidacyOtherDawn Williams ThesisOther

Dissertation of Dawn Williams.  She completed her PhD with David Saltzberg when I was starting my postdoc at UCLA.  She worked on GLUE and SalSA.

Attachment 1: The_Askar'yan_effect_and_detec.pdf
  3   Sun Dec 18 23:50:25 2016 Amy ConnollyRefereed PapersAnalysisConstraints on the Ultra-High-Energy Neutrino Flux from Gamma-Ray Bursts from a Prototype Station of the Askaryan Radio ArrayARA
Attachment 1: elsarticle-template-num.pdf
  27   Tue Apr 18 12:26:39 2017 Oindree BanerjeeThesis/CandidacyGeneralBrian Mercurio PhD thesis from 2009 ANITA

Go to link: 

https://osu.box.com/s/5pg7cwdwp3jnamjpgxdv0r6axndgsh9p

  43   Thu Mar 22 16:45:25 2018 Brian DaileyThesis/CandidacyAnalysisBrian Dailey's PhD ThesisANITA

Brian Dailey's PhD Thesis.

Attachment 1: brian_dailey_thesis_final.pdf
  31   Tue May 16 10:22:41 2017 Brian DaileyThesis/CandidacyTheoryBrian D. Candidacy, Neutrino FlavorANITA

Brian Dailey's Candidacy from March 2012. It deals with Neutrino flavors, mostly with oscillations/mixing, interactions, and detection.

Attachment 1: Brian_candidacy.pdf
  25   Tue Apr 11 12:24:27 2017 Brian ClarkThesis/CandidacyHardwareBrian Clark's PhD Candidacy Exam: Trigger Thresholds in UHE Astrophysics 

Here is a link to my candidacy talk
pdf: https://osu.box.com/s/biopkz0gewliadwgm4j4k1tlyaeubj8v

ppt: https://osu.box.com/s/eq90mzffh0iy4kvg0pvf0dhjbm4qj0xl

The paper is attached, including the source tex.

Attachment 1: Brian_Candidacy_Paper.pdf
Attachment 2: Brian_Candidacy_Paper_Source_Tex.zip
ELOG V3.1.5-fc6679b